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Summary:  

Small supernumerary marker chromosomes (sSMC) are defined as additional centric 

chromosome fragments too small to be identified or characterized unambiguously by banding 

cytogenetics alone. Even though certain sSMC were associated with specific clinical pictures 

and syndromes, for most of the sSMC only first steps towards genotype-phenotype 

correlations were achieved. Therefore sSMC are still a problem in clinical cytogenetics and 

can be harmful due to different mechanisms like induction of genomic imbalances and/or 

uniparental disomy of the sSMC’s sister chromosomes. This study had the aim to provide new 

insights into the questions (i) if and why sSMC include specific breakpoints and (ii) how to 

distinguish harmful from harmless sSMC. Thus, several approaches for better sSMC 

characterization (HCM-FISH) and/or, characterization of sSMC breakpoints were developed 

(PCL-FISH; 1MB sets spanning the transitions of dosage-sensitive and dosage-insensitive 

pericentric regions) and established. sSMC breakpoints were characterized in detail using 

these new approaches, but also by microdissection based array-comparative genomic 

hybridization. First hints were obtained that breakpoints involved in sSMC formation are 

situated preferentially in gene- poor regions of the pericentric regions. Concerning genotype-

phenotype correlation of sSMC the present study further identified one new “complex sSMC” 

associated syndrome: the der(13 or 21)t(13 or 21;18) syndrome, which is associated with a 

mild clinical phenotype irrespective of partial trisomy 18p. Finally, influence of mosaicism on 

sSMC-related phenotypes was studied in detail.  

In conclusion, the present study provided important new data for genotype-phenotype 

correlation and biological understanding of sSMC. 

 
 

  

 

 

 

 

 

 

 

 

 



Summary                                                                                                                                                   2 
 

Zusammenfassung: 

Kleine überzählige Marker-Chromosomen (sSMC) sind definiert als zusätzliche zentrische 

Chromosomenfragmente, die zu klein sind, als allein mittels Zytogenetik identifiziert oder 

eindeutig charakterisiert werden zu können. Auch wenn bestimmte sSMC schon mit 

spezifischen Krankheitsbilder und Syndromen assoziiert werden konnten, wurden für die 

meisten der sSMC bisher nur erste Schritte bezüglich Genotyp-Phänotyp-Korrelationen 

erreicht. Daher sind sSMC immer noch ein Problem in der klinischen Zytogenetik und können 

sich ungünstig auf den Phänotyp auswirken durch verschiedene Mechanismen, wie die 

Induktion von genomischen Imbalancen und/oder einer uniparentalen Disomie der 

Schwesterchromosomen des sSMC. Die hier vorliegende Studie hatte das Ziel, neue 

Einsichten in die Fragen (i) ob und warum sSMC spezifische Bruchpunkte haben, und (ii) wie 

schädliche von harmlosen sSMC zu unterscheiden sind. Daher wurden mehrere Ansätze für 

eine bessere sSMC-Charakterisierung (HCM –FISH) und/oder die Charakterisierung von 

sSMC Bruchpunkten entwickelt (PCL–FISH; 1MB Sondensets welche die Übergänge der 

dosisempfindlichen und der dosisunempfindlichen perizentrischen Regionen unterscheiden). 

sSMC Bruchpunkte wurden mit diesen neuen Ansätzen, aber auch im Detail durch 

mikrodissektion-basierende-array-komparative genomische Hybridisierung charakterisiert. 

Erste Hinweise wurden erhalten, dass die an der Bildung der sSMC-Bruchpunkte beteiligten 

Regionen bevorzugt in genarmen Bereichen des Perizentromers liegen. Bezüglich der 

Genotyp-Phänotyp-Korrelation von sSMC wurde in der vorliegenden Studie ein neues mit 

einem "komplexen sSMC" verbundenes Syndrom definiert: das der(13 oder 21)t(13 oder 

21;18)-Syndrom, welches mit einem milden klinischen Phänotyp aber einer partiellen 

Trisomie 18p verbunden ist. Schließlich wurde der Einfluss von zellulären Mosaiken in 

sSMC-Syndromen auf den Phänotyp im Detail untersucht. 

Insgesamt liefert die vorliegende Studie wichtige neue Daten für Genotyp-Phänotyp-

Korrelation und das biologische Verständnis von sSMC. 
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1. Introduction 

1.1. Cytogenetics – how to characterize chromosomes 

Chromosomes are the factors that distinguish one species from another and that enable the 

transmission of genetic information from one generation to the next; the study of 

chromosomes and cell division are referred to as Cytogenetics (Turnpenny and Ellard 2007). 

Cytogenetic studies allow analyzing the chromosomal behavior in the organization and 

transmission of genetic information, variability mechanisms and evolutionary pathways, 

besides contributing to the genetic improvement of domestic species (Lacadena 1996) and its 

essential role in clinical genetics. Therefore, cytogenetics is mainly focused on structure and 

chemical/genetic organization of chromosomes, linking two formerly unrelated sciences, 

cytology and genetics (Griffiths et al. 1996). 

 
1.1.1. Classical and banding cytogenetics 

The essential step for the emergence of modern human cytogenetics approach was when Tjio 

and Levan (1956) correctly concluded that the normal human somatic cell contains 46 

chromosomes (Tjio and Levan 1956) which was confirmed by examining meiotic 

chromosomes (Ford and Hamerton 1956). In 1959, Lejeune and colleagues found the trisomy 

for chromosome 21 as the underlying cause of the Langdon Down syndrome (Lejeune et al. 

1959), and after that Nowell and Hungerford, in 1960 identified a minute chromosome in the 

peripheral blood of patient with chronic granulocytic leukaemia which was called later 

Philadelphia 1 chromosome (Nowell and Hungerford 1960). In 1961 Ilberry and coworkers 

provided the first description of a small supernumerary marker chromosome (sSMC; see also 

1.2) when reporting a boy with epicanthic fold and protuberant tongue and a karyotype 

47,XY,+mar/46,XY (Ilberry et al. 1961). Later, Ellis and colleagues (1962) reported an 

aberrant small acrocentric chromosome (Ellis et al. 1962), and Froland and colleagues (1963), 

described a boy with several congenital defects with a karyotype 47,XY,+mar (Froland et al. 

1963). This altogether opened broad prospects to clinical cytogenetic studies and the 

literatures showed the relation between numerical and morphological chromosomal 

aberrations and disease in man (Luthardt and Keitges 2001).  

Classical cytogenetic staining approaches can provide information regarding the structure of 

an sSMC (Rooney and Czepulkowski 1986). The size and shape is often more clearly 

observed in solid-stained preparations, since chromosome banding approaches like G-banding 

(Claussen et al. 2002) may suggest a particular chromosomal origin (Seabright 1971), such as 

in case of tetrasomy 12p (Graf and Schwartz 2002). So-called chromosomal satellites 

including the nucleolus-organizing regions (NORs) may be present at one or both ends of an 
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sSMC and can be visualized either by silver staining or observation of satellite association 

between the marker and other acrocentric chromosomes (Thangavelu et al. 1994). 

Centromeric heterochromatin can be highlighted by C-banding (Gardner et al. 2012). If a 

marker chromosome has two centromeres, one may be inactived, either in all or in a 

proportion of cells, as recent studies of our group showed (Ewers et al. 2010). 

DistamycinA/DAPI staining identifies the heterochromatin of chromosomes 1, 9, 15, and 16 

and of the Y chromosome. In case an sSMC has chromosomal satellites and, in addition, a 

distamycinA/DAPI-staining region, then an origin from chromosome 15 is likely, even 

though this could not always be substantiated (Wisniewski et al. 1979, Callen 1991).  

In 1971/1972 a system of nomenclature was proposed for banded human chromosomes and 

chromosome abnormalities and was based on the patterns observed in different cells stained 

with either of the chromosome banding techniques (Mitelman 1995). This international 

system for human cytogenetic nomenclature (ISCN) is still in place and actualized regularly 

(Shaffer et al. 2013). By standard banding techniques karyotypes a pattern of ~500 bands can 

be achieved. G-bands made it possible for a detailed analysis of each chromosome to be 

carried out, which led to improved definitions of different chromosomal aberrations and the 

discovery of new cytogenetic syndromes in clinical pathology. Thus, nowadays, it is still the 

starting point and gold standard of all cytogenetic techniques (Garcia-Sagredo 2008). 

 
1.1.2. Molecular cytogenetics 

The staining patterns produced on chromosomes by banding procedures are sometimes 

ambiguous, and the resolution is limited by the optical characteristics of microscopes and the 

complex manner in which DNA is packaged into chromosomes (Li and Pinkel 2006). But 

further characterization of particular rearrangements requires additional techniques. Among 

them, fluorescence in situ hybridization (FISH) becomes increasingly important in the 

characterization of both constitutional and acquired chromosomal abnormalities (Gerdes et al. 

1997). In 1969, Gall and Pardue described the hybridization of radioactively labeled rRNA to 

tissue squashes allowing the in situ visualization of the complementary sequences, the rDNA, 

within cells (Gall and Pardue 1969) and then, in 1986, Pinkel and coworkers (1986) and 

Cremer and coworkers (1986) reported FISH using non-radioactively labeled probes. Since 

then, FISH has been further developed and widely used for the detection of DNA or RNA 

sequences (Pinkel et al.1986, Cremer et al. 1986). In situ hybridization is based on the specific 

base pairing of two complementary nucleic acid sequences, the probe and the target 

sequences. Hybridized probes are detected via fluorochromes using epifluorescence 
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microscopy, via colorimetric enzyme assays by transmission light microscopy, or via metallic 

compounds in the electron microscope (Joos et al. 1994).  

The aim of the FISH technique is to characterize either imbalances, i.e gains or losses of 

chromosome material, or specific breakpoints with or without imbalance (Kjeldsen and 

Kølvraa 2002). A number of different types of probes for FISH can be distinguished on the 

basis of the complexities of probe or target sequences: the alphoid and satellite probes 

detecting repeat-targets; individual probes such as plasmid-, cosmid (35-55 kb)-, bacterial 

artificial chromosomes (BACs)-, yeast artificial chromosomes (YACs) or P1 filamentous 

phage artificial chromosomes (PACs) - clones detecting single copy sequences  – nowadays 

mainly used BACs; or composite probes are generated using PCR with sequence-specific 

primers, allowing a specific painting of individual chromosomes or chromosomal regions 

(Pinkel et al. 1988, Speicher 2005). Following the sequencing of the human genome, large-

insert clones that have been mapped and sequenced, and can be used as probes, are now 

readily available for almost any genomic region. Probes can be selected easily using internet-

browsers such as Ensembl Cytoview, NCBI Map-Viewer or the UCSC genome browser 

(Speicher and Carter 2005). This relatively new field of molecular cytogenetics, which makes 

use of a variety of nucleic acid sequences as probes to cellular DNA targets has helped to 

bridge the gap between molecular genetics and classical cytogenetic analyses (Teixeira 2002).  

Nederlof and coworkers reported in 1989 the first multicolor FISH (three-color FISH) 

experiments (Nederlof et al. 1989). For multicolor karyotyping with painting probes several 

approaches were developed, including multiplex FISH (M-FISH), spectral karyotyping 

(SKY), color changing karyotyping (CCK), and combined binary ratio labeling (COBRA) 

(Liehr and Claussen 2002a,b). Molecular cytogenetics has provided new tools to characterize 

aberrant karyotypes more precisely (Haddad et al. 1998) and became important component of 

molecular diagnostics, particularly for diagnosing congenital syndromes in which the 

underlying genetic defect is unknown (Speicher and Carter  2005).  
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1.1.3. Comparative Genomic Hybridization (CGH) and array-based CGH (aCGH) 

Comparative genomic hybridization (CGH) is a molecular cytogenetic technique that allows 

comprehensive analysis of the entire genome. CGH permits the rapid detection and mapping 

of DNA sequence copy number differences between a normal and an abnormal genome 

(Kallioniemi et al. 1992). It has wide potential in application to basic research and clinical 

practice, particularly in areas such as tumour genetics. Indeed, because DNA copy number 

modifications are of pathogenic importance in cancer, CGH was initially developed for cancer 

research (Lapierre and Tachdjian 2002, Tachdjian 2009). In CGH, two DNA samples are 

differentially labelled, for example, with the test labelled in green and the reference in red 

(Fig.1.1). The combined probes are then applied to target metaphase chromosomes and 

compete for complementary hybridization sites. Therefore, if a region is amplified in the test 

sample the corresponding region on the metaphase chromosome becomes predominantly 

green. Conversely, if a region is deleted in the test sample the corresponding region becomes 

red. The ratios of test to reference fluorescence along the chromosomes are quantified using 

digital image analysis. Gains and amplifications in the test DNA are identified as 

chromosomal regions with increased fluorescence ratios, whereas losses and deletions result 

in a reduced ratio (Speicher and Carter 2005, Kallioniemi 2008).  

 

 

 

Figure 1.1. Principle of comparative genomic hybridization (CGH) as described by Weiss and 
coworkers (1999). (A) Schematic overview of the CGH technique. Tumor and reference DNA are 
labelled with a green and red fluorochrome, respectively, and hybridized to normal metaphase spreads. 
Images of the fluorescent signals are captured and the green to red signal ratios are quantified digitally 
for each chromosomal locus along the chromosomal axis. (B) High level gain on the long arm of 
chromosome 12. The clear green band shows the high level gain or amplification on the long arm of 
chromosome 12 (chromosomal band 12q15). 
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In analyzing the results of CGH, several limitations must also be taken into account. CGH can 

spot sequence copy number changes only if more than 50 % of the cells analyzed contain a 

chromosomal gain or loss. CGH is also impaired in its ability to identify balanced 

chromosomal abnormalities for which there are no copy number changes, such as those found 

in balanced translocations, inversions and intragenetic rearrangements (Tachdjian et al. 2008). 

Genetic changes are detected and mapped on chromosomes when the size of the chromosomal 

region affected is at least 10–12 Mb (Bentz et al. 1998).  

Subsequently array-based CGH (aCGH) was established, an approach where arrays of 

genomic sequences replaced the metaphase chromosomes as hybridization targets by large 

numbers of mapped clones that are spotted onto a standard glass slide greatly increasing the 

resolution of screening for genomic copy number gains and losses (Solinas-Toldo et al. 1997, 

Pinkel et al. 1998). This solved many of the technical difficulties and problems caused by 

working with cytogenetic chromosome preparations. The main advantage of aCGH is the 

ability to perform copy number analyses with much higher resolution than was ever possible 

using chromosomal CGH (Davies et al. 2005, Pinkel and Albertson 2005, Lockwood et al. 

2006). 

Two major groups of microarray-based platforms are currently used in clinical cytogenetics: 

microarray-based comparative genomic hybridization (aCGH), and single nucleotide 

polymorphism (SNP) genotyping-based arrays (Li and Andersson 2009). In aCGH, the most 

apparent besides those already present in CGH includes the challenge of interpreting copy 

number variants (CNVs) of unknown significance and distinguishing disease-causing CNVs 

from normal CNV polymorphisms (Li and Andersson 2009, Bishop 2010).  

 

1.1.3.1. Microdissection and aCGH 

In 1981 Scalenghe and colleagues were the first to develop the chromosome microdissection 

and microcloning technique (Scalenghe et al. 1981). Then, it was extended to human 

chromosomes (Bates et al. 1986, Lüdecke et al. 1989, Senger et al. 1990). Microdissection 

can be used to isolate derivative chromosomes form a balanced translocation or marker 

chromosomes present in low mosaic. This DNA can be amplified and used in aCGH, thus 

overcoming parts of its above mentioned limitations (1.1.3). For sSMC this approach was 

applied by others (Shaw et al. 2004) and our group in single case studies (Liehr et al. 2006a, 

Backx et al. 2007).  
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1.2. Small supernumerary marker chromosomes (sSMC) 

1.2.1. Definition and nomenclature 

Small supernumerary marker chromosomes (sSMC) were first described in 1961 by Ilberry 

and coworkers and, today, it is known that sSMCs are present in approximately 3.0 million 

carriers worldwide in a population of 7 billion human beings (Liehr et al. 2004a, Liehr 

2014a). sSMC can be defined as “small structurally abnormal chromosomes that occur in 

addition to the normal 46 chromosomes” (Crolla et al. 1997), and according to the definition 

of the ISCN 2013, a marker chromosome (mar) is a structurally abnormal chromosome that 

cannot be unambiguously identified or characterized by conventional banding cytogenetics 

(Shaffer et al. 2013). Numerous terms have been used in the literature to described sSMC in 

the last few decades. The three best known are supernumerary marker chromosome (SMC) 

which does not distinguish between larger and smaller SMCs, extra structurally abnormal 

chromosome (ESAC), and supernumerary ring chromosome (SRC). In addition, other 

designations summarized elsewhere were used (Liehr 2012, Liehr et al. 2004a). The 

chromosomal origin of some sSMCs has been identified and associated with known 

syndromes, such as isochromosome 12p [i(12p), OMIM #601803] Pallister-Killian syndrome 

(PKS), isochromosome 18p [i(18pS), OMIM #614290] syndrome, Emanuel syndrome (ES) or 

supernumerary-derivative chromosome 22 [der(22)t(11;22)(q23;q11.2), OMIM #609029] 

syndrome, and inverted duplication 22 [inv dup(22q), OMIM #115470] cat eye syndrome 

(CES) (Ballif et al. 2007). Liehr and colleagues reviewed, sSMCs are a morphologically 

heterogeneous group of structurally abnormal chromosomes: different types of inverted 

duplicated chromosomes (inv), centric minute chromosomes (min) and ring chromosomes (r) 

can be detected (Fig. 1.2), and they suggest for the first time a cytogenetic one as follows: 

sSMC are structurally abnormal chromosomes that cannot be identified or characterized 

unambiguously by conventional banding cytogenetics alone, and are (in general) equal in size 

or smaller than a chromosome 20 of the same metaphase spread (Liehr et al. 2004a). In 

contrast, a SMC larger than chromosome 20 usually can be identified based on chromosome 

banding. The definition of small SMC versus large(r) SMC is a cytogenetic, but not 

functional, because sSMC and larger SMC can have the same modes of karyotypic evolution. 

sSMC can be present additionally (1) in a karyotype of 46 normal chromosomes, (2) in a 

numerically abnormal karyotype (e.g. Turner or Down syndrome) or (3) in a structurally 

abnormal but balanced karyotype (e.g. Robertsonian translocation) or ring chromosome 

formation (Liehr et al. 2004a, Liehr et al. 2009a, Liehr 2012).  
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Figure.1.2. Different shapes of Small supernumerary marker chromosomes (sSMC). sSMCs can form 

three basic types of shapes: ring-structure (r), inverted duplication (inv dup), and centric minute (min) 

(Liehr et al. 2004a). 

 

1.2.2. Characterization  

Detection of an sSMC is nearly always unexpected by the clinician and more or less an 

accidental result in cytogenetics. The origin of sSMC is almost impossible to establish by 

routine cytogenetics alone, whereas fluorescence in situ hybridisation (FISH) methods are 

highly suited for this (Starke et al. 2003a). A variety of molecular cytogenetic techniques that 

provide more comprehensive analysis in a single or a few experiments have been described 

for sSMC characterization. M-FISH, multicolor banding (MCB), whole-chromosome painting 

(WCP), locus-specific FISH, centromere specific multicolor FISH (cenM-FISH), 

subcentromere specific multicolor FISH (subcenM-FISH), microdissection coupled with 

reverse painting and FISH approaches may all provide identification of the chromosome of 

origin of SMCs (Nietzel et al. 2001, Brecevic et al. 2006, Pietrzak et al. 2007). Even if M-

FISH is readily available, this technique can result in ambiguous classification or 

misclassification of sSMCs, particularly if they are small. In addition, these multicolor FISH 

techniques cannot precisely determine the chromosome regions or breakpoints involved 

(Tsuchiya et al. 2008). Usually, sSMC larger than chromosome 20 can be identified based on 

chromosome-banding. Additionally, C-banding, silver staining of NOR or Q-banding were 

used for sSMC characterization (Gersen and Keagle 2005). WCP-FISH approaches are well-

suited for the determination of the chromosomal origin of marker or derivative chromosomes 

providing that they are larger than 17p, whereas if they are smaller, WCP-FISH is, in general, 

non-informative (Haddad et al. 1998, Starke et al. 1999). Also, it is possible characterization 

sSMC with a euchromatic content of approximately half of the short arm of chromosome 17p 
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or more by the MCB technique is possible (Weise et al. 2002, Starke et al. 2003a). sSMCs 

have also been successfully characterized by glass needle-based chromosome microdissection 

and reverse chromosome painting (Starke et al. 2001). This approach is suited for all types of 

sSMCs, including neocentromeric ones (Liehr et al. 2007). Although a comprehensive 

characterization seems to be available by microdissection and reverse painting, it is restricted 

as it provides on information regarding the orientation of eventual present chromosomal 

fragments or the copy number of specific subregions, and no reliable information on the 

presence or absence of centromere-near euchromatic content (Liehr et al. 2009a). aCGH is an 

efficient and sensitive technique for detecting genome-wide copy number alterations at high 

resolution (Shaffer et al. 2007). aCGH can now provide accurate characterization of SMCs in 

terms of chromosomal origin, gene content, and other concomitant imbalances elsewhere in 

the genome (Reddy et al. 2013). However, most successfully characterized sSMCs were 

larger than 17p. Furthermore, centromeric and/or heterochromatic regions are problematic. 

CGH has the advantage that it provides informative results on the euchromatic region(s) 

involved in a sSMC, these regions must be larger than approximately 5-10 Mb to be visible in 

CGH and can be overcome that, in principle, by application of aCGH, where much higher 

resolutions can be achieved (Tsuchiya et al. 2008, Liehr et al. 2009a). Although aCGH using 

chips that provide comprehensive genome coverage may become the technology of choice for 

initial characterization of SMCs, G-banded and FISH analyses are still indispensable for 

determining the structure and level of mosaicism of these chromosomes. G-banded analysis 

may also be useful for detecting low level mosaic SMCs that could potentially be missed by 

array CGH (Tsuchiya et al. 2008). sSMC can be best characterized for their chromosomal 

origin by using centromeric probes. Nietzel and colleagues proposed the centromere-specific 

multicolor FISH (cenM-FISH), as fast and easy method for sSMC characterization (Nietzel et 

al. 2001). This approach overcomes the limitations of all the previously mentioned methods 

concerning the informational value of the centromeric regions (Liehr et al. 2009a).  

Several probe sets were suggested as approaches to detect the presence of euchromatic on an 

sSMC. Besides FISH banding, approaches such as multicolor banding (Liehr et al. 2006b), 

and subcentromeric multicolor-FISH (subcenM-FISH), a probe set comprising of 43 bacterial 

or yeast artificial chromosome clones located in proximal regions of each human chromosome 

(Starke et al. 2003a) were suggested. Still the approaches available at the beginning of the 

present work were not ideal yet for sSMC-characterization. 

As reported previously by (Chudoba et al. 1999, von Eggeling et al. 2002, Liehr et al. 2009a) 

and others (reviewed in: Kotzot 2002a), they recommended that, after identification of the 
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origin of the sSMC, its normal sister-chromosomes should be tested for their parental origin 

to exclude a possible uniparental disomy (UPD). However, most sSMCs have yet to be 

accurately characterized (Liehr et al. 2004b) because of variations in euchromatic DNA 

content, different degrees of mosaicism, UPD of the chromosomes homologous to the sSMC, 

and technical limitations of fluorescence in situ hybridization (FISH) and G-banding that do 

not allow for accurate detection of sSMCs at high resolution (Starke et al. 2003a). This has 

resulted in a lack of genotype/phenotype correlation for most sSMCs. 

 
1.2.3. Formation of sSMC  

Different mechanisms of sSMC formation including trisomic rescue, monosomic rescue, post 

fertilization errors and gamete complementation have been proposed in the literature (Bartels 

et al. 2003, Liehr et al. 2004a). Later, a new mechanism was proposed, that could provides a 

possible explanation for the formation of multiple sSMC of different origin, in which sSMC 

originated from transfection of chromosomes into the zygote derived from one or more 

superfluous haploid pronuclei that would normally be degraded by deoxyribonucleases or 

other means (Daniel and Malafiej 2003). Modes of sSMC-formation, which were not topic of 

this work, are summarized in Fig. 1.3. 
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Figure 1.3. Different modes of sSMC formation: Development of an acrocentric inverted 
duplication chromosome (A) for non-acrocentric iso-chromosomes the same U-type exchange during 
meiosis is thought to be the most likely explanation for sSMC formation, as well. (B) The evolution of 
a neocentric chromosome in connection with a U-type exchange is depicted. Ring chromosome 
formation can be (C) due to an interstitial deletion, (D) in connection with a U-shape reunion between 
broken sister chromatids leading to an inverted duplicated ring or (E) evolve from a minute 
chromosome. The latter is postulated to evolve by degradation of a whole chromosome, which is 
indicated by the red arrows in the left part in E (F) arise connected with a complex chromosomal 
rearrangement leading to an inverted duplication prior to the formation of a ring (Liehr et al. 2004a). 
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1.2.3.1. Mixtures of different sSMC shapes 

Recently Liehr and collaborators observed that one, two, or all three sSMC shapes (centric 

minute, ring, inverted duplication) can be present in a single patient with karyotype 

47,XN,+mar (Liehr et al. 2006c). When previously unexpectedly different sSMC shapes are 

present, this condition is called cryptic mosaicism. Several patients with extremely active 

karyotypic evolution have been reported with up to ten different sSMC variants of the same 

derivative chromosome in their peripheral blood cells (Liehr et al. 2006c, Liehr 2009). Figure 

1.4 reviews examples of how different shapes of sSMC can change to other ones. Presently, it 

can just be stated that this flexibility in sSMC shape exists; there are as yet no ideas on the 

mechanism of ring formation from a minute-shaped sSMC, for ring doubling, ring opening, 

and formation of inverted-duplication-shaped sSMC from centric minute-shaped sSMC, or for 

reduction of sSMC size and subsequent stabilizing of the sSMC again (Liehr 2012). 
 
 
 

 
 
Figure 1.4. Multiple shapes of sSMC can evolve during the lifetime of an sSMC carrier. In the 
schematically given example according to the case reported in Liehr (2009), it is postulated that the 
starting point is a centric minute-shaped sSMC. This can undergo ring formation (short horizontal 
arrows), reduction in size (vertical arrows to top), ring opening (vertical arrows to bottom), and 
inverted duplication (long horizontal arrow) [Liehr 2012]. 
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1.2.4. Epidemiology of sSMC in genetics disorders: 

For several reasons sSMC are still a problem in clinical cytogenetics: (i) they are too small to 

be characterized for their chromosomal origin by traditional banding techniques and require 

molecular (cytogenetic) techniques for their identification (Liehr and Weise 2007); (ii) most 

of the sSMCs have not been correlated with clinical syndromes, even though progress was 

achieved, recently (Liehr et al. 2006c, Liehr 2014a); (iii) sSMC can be harmful due to 

different mechanisms like induction of genomic imbalance and/or UPD of the sSMC’s sister 

chromosomes (Liehr et al. 2004b); (iv) also sSMC can be found just by chance and cannot be 

correlated with the clinical problems of a patient (Liehr 2010); finally (v) the percentage in 

which an sSMC is present (mosaicism) can, but must not have an influence on the clinical 

outcome (Liehr et al. 2004b, 2006c, Liehr 2014a). Thus, to understand the epidemiology of 

sSMC comprehensive studies of sSMC need to be done. 

1.2.4.1. Clinical consequences of sSMC 

In approximately 30% of SMC carriers an abnormal phenotype is observed. The clinical 

outcome of an sSMC is difficult to predict as they can have different phenotypic 

consequences because of (1) differences in euchromatic DNA-content, (2) different degrees of 

mosaicism, and/or (3) UPD of the chromosomes homologous to the SMC (Starke et al. 

2003a). Also the risk for phenotypic abnormalities associated with a marker chromosome 

depends on several factors, including inheritance, mode of ascertainment, chromosomal 

origin, and the morphology, content, and structure of the marker (Graf et al. 2006). Thus, the 

main problem is de novo sSMC detected prenatally, which are not characterized in detail. It 

has been shown that most couples decide in such cases against the child, even though there is 

a 2:1 chance that the developing child would be normal.  

Certain marker chromosomes are consistently identifiable by G-banding and have a well-

established phenotype. Examples include i(12p), associated with PKS and i(18p), which cause 

both mild–moderate mental retardation and a characteristic facial appearance (Callen et al. 

1990), and for chromosome 15-derived marker chromosomes, often seen as isodicentric 15q. 

FISH analysis allows discrimination between large markers that contain the SNRPN locus and 

thus are tetrasomic for the Prader–Willi syndrome (PWS) or Angelman syndrome (AS) 

critical region and those small markers that do not contain SNRPN (Crolla et al. 1995, Huang 

et al. 1997, Eggermann et al. 2002, Baldwin 2008). 
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1.3. Aims of the present study/ Questions worked on 

The long term objective of the present project is get new insights in the regulation of gene-

expression within the pericentric region of the human genome. There was some evidence at 

the begin of this study that there are dosage sensitive and insensitive regions around the 

human centromeres. This evidence was supported by own studies and thus the main focus of 

my studies were the following questions. 

 

1) How to characterize sSMC quickly and comprehensively? 

2) How to distinguish sSMC straight forward between benign and harmful? 

3) Where are the borders of dosage-sensitive pericentric regions? 

 

Or as summarized in the title of this thesis here should be studied why sSMC break, where 

they break and how to distinguish harmful from harmless sSMC. 

 

To answer these questions FISH-probe sets were established, ~400 new sSMC cases were 

studied during the present work and microdissection based aCGH was systematically applied 

in 80 sSMC cases.  
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The main points of the present study - as highlighted in discussion -  part are: 
 

1) better sSMC characterization approaches,  

2) characterization of chromosomal breakpoints involved in sSMC formation,  

3) on mosaicism in sSMC, and overall, 

4) on a refinement of the genotype-phenotype correlation in sSMC. 

 

Those four points are also covered in the papers mentioned above as listed in the Table below: 

 

Table.2.1. Articles of the present Ph.D. work is based on. 

Article No. probe sets involved 
breakpoints mosaicism genotype/ 

phenotype 
1 + - - - 
2 + + - + 
3 + + + + 
4 + + + + 
5 + - + - 
6 + + - + 
7 + + - + 
8 + - - + 
9 - - + - 
10 - - - + 
11 - - + + 
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Human genetics is a discipline, which includes 
pre- and post-natal counseling of patients and 
families. A genetic basis can be considered in 
individuals suffering from infertility and/or 
repeated abortions, or any kind of acquired or 
inherited syndrome [1]. At present, genetic coun-
selors have a multitude of technical possibili-
ties, some highly sophisticated, for the genetic 
analysis of an individual. Approaches such as 
next-generation sequencing of a whole genome 
has gained importance and has been helpful on 
many occasions [1,2].

Besides genetic counseling, another key 
element of human genetics is still the well-
established approach of cytogenetics, includ-
ing molecular cytogenetics [1]. In many western 
countries (e.g., Germany), insurance companies 
request, where appropriate, banding cytogenet-
ics as the starting test for a genetic analysis. 
Thus, up to 40% of individuals in search of 
advice are still studied cytogenetically, and a 
subset of them are further analyzed by molecular 
cytogenetics [Schreyer I, Pers. Comm.]. Additionally, 
in most countries (except for North America 
and western Europe) cytogenetics is still the 

gold standard for any genetic analysis, with 
molecular cytogenetics becoming available over 
the last decade.

After the introduction of array-comparative 
genomic hybridization (aCGH), cytogenetics/
molecular cytogenetics were considered to be 
outdated by some researchers [3,4]. However, it 
is common knowledge that aCGH results can 
only be correctly interpreted if cytogenetics is 
performed in parallel; in addition, abnormal 
aCGH results need to be confirmed by a second 
method, such as molecular cytogenetics [5,6].

Molecular cytogenetics
In banding cytogenetics –  today often incor-
rectly called ‘classical cytogenetics’ (classical 
cytogenetics is Giemsa or Orcein staining with-
out any banding) – only chromosome morphol-
ogy combined with a black and white banding 
pattern is evaluated. Thus, only changes within 
the normal banding pattern, size variations in 
a chromosomal band or the chromosome itself, 
and changes to the centromere index, can be 
detected [7]. To overcome these limitations, 
FISH approaches were introduced in the 1980s, 
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Multicolor FISH (mFISH) assays are currently indispensable for a precise description of derivative 
chromosomes. Routine application of such techniques on human chromosomes started in 1996 
with the simultaneous use of all 24 human whole-chromosome painting probes in multiplex-
FISH and spectral karyotyping. Since then, multiple approaches for chromosomal differentiation 
based on multicolor-FISH (MFISH) assays have been developed. Predominantly, they are applied 
to characterize marker or derivative chromosomes identified in conventional banding analysis. 
Since the introduction of array-based comparative genomic hybridization (aCGH), mFISH is also 
applied to verify and further delineate aCGH-detected aberrations. For the latter, it is important 
to consider the fact that aCGH cannot detect or characterize balanced rearrangements, which 
are important to be resolved in detail in infertility diagnostics. In addition, mFISH is necessary 
to distinguish different imbalanced situations detectable in aCGH; small supernumerary marker 
chromosomes have to be differentiated from insertions or unbalanced translocations. This 
review presents an overview on the available mFISH methods and their applications in pre- and 
post-natal clinical genetics.
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and the new field of ‘molecular cytogenetics’ was launched. For 
more information on FISH, readers are directed to [8], as such a 
discussion will not be covered in this review.

One-, two- and three-color FISH experiments are standard in 
every laboratory around the world performing molecular cytoge-
netics. Multicolor FISH (mFISH) is defined as the simultaneous 
use of at least three different ligands or fluorochromes for the spe-
cific labeling of DNA – excluding the counterstain [9]. Due to this 
definition, the first successful mFISH experiments were performed 
in 1989 [10]. The first mFISH probe sets were put together 7 years 
later in 1996 [11,12]. In the following review, the available mFISH 
probe sets for humans are summarized and their applications in 
pre- and post-natal diagnostics are highlighted.

mFISH probe sets
Whole-chromosome painting-based mFISH probe sets
Between 1996 and 2000, simultaneous staining of each of 
the 24 human chromosomes in different colors using whole-
chromosome painting (WCP) probes was described repeatedly 
as multiplex-FISH (M-FISH) [11], spectral karyotyping (SKY) 
[12], mFISH, combined binary ratio labeling–FISH or 24-color 
FISH (reviewed in [9]). Between four and seven fluorescence dyes 
were used either for combinatorial labeling and/or ratio labeling 
(combinatorial labeling:  three up to seven fluorochromes are 
combined; each flourochrome combination is only used once. 
Ratio labeling: a maximum of three different fluorochromes are 
combined and mixed for each chromosome in different ratios). 
It was also shown that additional probes can be added to the 
basic 24-color FISH probe set (summarized in [9]). Today, the 
WCP-based mFISH probe sets are the most frequently applied 
probe sets in diagnostics; they are mostly designated as M-FISH 
or SKY probe sets [101].

mFISH probe sets for FISH-banding
The definition of FISH-banding probe sets is “…any kind of 
FISH technique which provides the possibility to simultane-
ously characterize several chromosomal subregions smaller than 
a chromosome arm – excluding the short arms of the acrocentric 
chromosomes; FISH-banding methods fitting that definition 
may have quite different characteristics, but share the ability to 
produce a DNA-specific chromosomal banding…” [13].

The most often applied and also commercially available mFISH 
probe set for FISH banding is the high-resolution multicolor-
banding (MCB) or m-banding technique [101]. It is based on 
overlapping microdissection libraries (partial chromosome paints 
[PCPs]) producing fluorescence profiles along the human chro-
mosomes, which was first described using the example of chromo-
some 5 in 1999 [14]. MCB/m-banding allows for differentiation of 
chromosome region-specific areas at the band and sub-band level 
at a resolution of 550 bands per haploid karyotype. In addition, 
the simultaneous use of all MCB PCPs in one hybridization step 
for the characterization of complex karyotypes is possible [15]. 
For the MCB probe set, a molecular definition of all underlying 
microdissection libraries was performed, which converted MCB 
into a DNA sequence-anchored probe set [16].

Besides these, there were many other mFISH-banding probe 
sets, which either were never finished for all human chromosomes 
or are no longer (commercially) available, such as cross-species 
color banding (Rx-FISH) or the Harlequin-FISH probe set [17]; 
spectral color banding [18] ; or interspersed PCR-based M-FISH 
[19]. There are also many probe sets leading to chromosome bar 
codes with different resolutions and applications (for a more 
detailed review, see [9]).

Centromeric probe-based mFISH probe sets
Some mFISH probe sets are based on repetitive centromeric satel-
lite probes. Such mFISH probe sets are extremely important in 
daily diagnostics, as combinations of different probes can princi-
pally be chosen freely according to the individual case and ques-
tion [20]. There is also an mFISH probe set that allows the simul-
taneous characterization of all human centromeres in one step, 
the centromere-specific mFISH [21]. This probe set is especially 
useful for the characterization of the chromosomal origin of small 
supernumerary marker chromosomes (sSMC) [22,102].

Locus-specific probe-based mFISH probe sets
mFISH probe sets based on locus-specific probes can be cre-
ated by every laboratory and many are commercially available 
[103–108]. Some of the abovementioned chromosome bar codes 
were based on such locus-specific probes [9]. At present, mainly 
bacterial artificial chromosome (BAC) probes are used, as the 
necessary BACs can easily be tracked in genome browsers [109–111] 
and are offered commercially [103]. One of the most imaginative 
mFISH probe sets developed during the last few years is the one 
that enables a type of single cell-directed microsatellite analysis; 
the so-called parental origin determination FISH (pod-FISH) 
approach, detecting copy number variant regions in the human 
genome on a single-cell level [23].

mFISH-probe sets based on combinations of a variety of 
probes
Finally, it is also possible to combine WCP, PCP, BAC or centro-
meric probes in one probe set. Recent examples are: the subcen-
tromere-specific mFISH [24], which can specifically characterize 
the centromere near euchromatic material; the heterochromatin-
M-FISH [25], which is specific for all larger heterochromatic 
regions in the human karyotype; or the 9het-mix [26], which ena-
bles subdifferentiation of chromosome 9 heteromorphisms in the 
human population.

Diagnostic applications of mFISH probe sets
mFISH probe sets are applied in pre- and post-natal clinical genet-
ics (see below), tumor cytogenetics [9,13,101] and various research 
fields [9,13,101]. Here, the authors focus on their use in clinical 
genetics; that is, molecular cytogenetics performed on amnion, 
chorion, blood and, rarely, fibroblast cells. In all these tissues, it 
is possible to not only analyze the gain or loss of chromosomes 
or chromosomal segments in metaphase, but also in interphase. 
Structural rearrangements are normally studied on metaphase 
chromosomes in clinical genetics.

Liehr, Weise, Hamid et al.
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mFISH-probe sets applied in the interphase
Interphase mFISH diagnostics normally use the abovementioned 
combination of centromeric and/or locus-specific probes; PCPs 
and WCPs can be applied in interphase research, but are not 
suited for routine applications. The most commonly used diag-
nostic probe set is the AneuVision® (Vysis Inc., IL, USA) probe 
set [106] or comparable ones [104,106], suited to detect the most 
frequent numerical chromosomal aberrations of the human fetus 
in the second trimester [27]. Preimplantation diagnostics are per-
formed with the aim of detecting up to 70% of the most frequent 
numerical chromosome aberrations responsible for spontaneous 
abortions [9].

All of the following mentioned applications are performed on 
metaphase chromosome preparations. Molecular cytogenetics is 
normally performed as a secondary diagnostic test; thus below, 
the primary test is listed as an entry criteria for mFISH.

mFISH used after a cytogenetic normal result
Banding cytogenetics in mentally retarded patients or prenatal 
cases with specific sonographic signs quite often give normal 
results. Still, the clinical signs may be indicative for some syn-
dromes to be excluded by FISH, namely microdeletion or micro-
duplication syndromes [28]. Therefore, the clinician needs to 
provide a suspected diagnosis and then the FISH probes for the 
corresponding microdeletion, or microduplication syndrome may 
be applied. In most cases, these probes are applied in two-color 
FISH experiments [104–106]; however, there was a suggestion for a 
simultaneous screening for Prader–Willi/Angelman (15q11.13), 
Williams–Beuren (7q11.23), Smith–Magenis (17p11.2) and 
DiGeorge/velocardiofacial (22q11.2) syndromes in one so-called 
‘multiFISH’ assay [29]. In addition, there were mFISH probe sets 
with locus-specific probes for the subtelomeric regions, which were 
successfully applied to detect genetic imbalances in up to 6% 
of patients with iodiopathic mental retardation [9]. However, in 
many instances such probe sets are now successfully replaced by 
real-time PCR, multiplex ligation-dependent probe amplification 
or aCGH settings [30].

mFISH used after an abnormal cytogenetic result
A cytogenetically abnormal result, which needs further mFISH 
testing, can include mosaics [31], larger derivative chromo
somes (balanced and unbalanced) [32] and/or the presence of an 
sSMC [22,102].

M-FISH or SKY probe sets will only be used in cases of complex 
chromosomal rearrangements [32] or if a derivative chromosome 
contains additional material of completely unknown origin [33]. 
As soon as the origin of the involved chromosomes is known, 
the chromosomal breakpoints are of interest and can be deter-
mined by mFISH-banding and/or locus-specific probes [9,13,101]. 
However, WCP-based mFISH-probe sets and mFISH-banding 
probe sets are not helpful for the characterization of sSMC or of 
heterochromatic variants.

Cytogenetically visible heterochromatic variants can be best 
characterized by the recently reported heterochromatin M-FISH 
probe set [25] or subsets of them [26,33].

sSMC, excluding neocentric ones [102], can be best character-
ized for their origin by centromere-specific M-FISH [21,22,24,102]. 
Subcentromere-specific M-FISH [24] is a straightforward approach 
for defining their euchromatic content, which might further be 
delineated by the pericentric ladder FISH probe set [34]. The latter 
enables a breakpoint analysis on a 10-Mb resolution.

mFISH used after an abnormal aCGH result
Since aCGH is applied for the characterization of subchromo-
somal imbalanced rearrangements [3–5], this is another starting 
point for the application of molecular cytogenetics. Here, indi-
vidual combinations of locus-specific (BAC) probes are used to 
prove or contradict a gain or loss suggested after aCGH [5,35].

aCGH is not necessarily fully informative with regards to the 
number of copies gained in the patient; for example, a threefold 
gain of 18p detected in aCGH may be a hint of an intrachromo-
somal duplication or a derivative chromosome t(autosome;18)
(?;p10) of the corresponding region in all cells of the patient. 
However, it can also be a hint on a mosaic karyotype 47,XN,+i(18)
(p10)(50%)/46,XN(50%). FISH and mFISH applications follow-
ing detection of an abnormal aCGH result were already repeatedly 
published [34–36] and are routine in clinical genetic diagnostics.

Conclusion
At present, mFISH methods are well established in clinical 
diagnostics. Apart from their longstanding role in refining and 
confirming cytogenetic results, mFISH approaches have gained 
additional importance in the verification of aCGH results. This 
underlines the truth that every approach has advantages and dis-
advantages: the conventional approach-banding cytogenetics has 
a lower resolution but provides a highly informative ‘in situ’ view 
on the human genome; aCGH, however, results in a higher resolu-
tion but gives a result more distant from the in vivo situation and 
can only detect imbalanced rearrangements. Both approaches are 
connected by molecular cytogenetics, and a comprehensive view 
on a pre- or post-natal clinical case is most often only possible after 
applying several of the currently available approaches, including 
mFISH, in a majority of them.

Expert commentary
Molecular cytogenetics, especially mFISH, is still a progressive 
field. New mFISH probe sets are being developed up to the pre-
sent date [25,34]. Otherwise, mFISH is necessary to confirm and 
refine diagnostic findings of cytogenetics and aCGH. Therefore, 
the method is the connecting approach for banding cytogenetics 
and molecular genetics.

Five-year view
The field of molecular cytogenetics/mFISH is an important tool 
to define and visualize chromosomal changes detectable in pre- 
and postnatal diagnostics. According to the fact that mFISH 
gained importance during the last years rather than lose it, in 
5 years from now, it will be at least as significant as diagnostics are 
now. It can be expected that even findings seen in next-generation 
sequencing are necessary to be confirmed by mFISH in future [37].

Multicolor FISH methods in current clinical diagnostics
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Key issues

• Human genetics is a discipline that includes pre- and post-natal counseling of patients and families, (molecular) cytogenetics and 
molecular genetics.

• In molecular cytogenetics, multiple multicolor FISH (mFISH) approaches are now available.

• mFISH is performed based on whole or partial chromosome painting, centromeric or locus-specific DNA probes.

• Since 1996, new mFISH probe sets have been established every year, and this development is still ongoing.

• mFISH can be applied during interphase and metaphase.

• mFISH assays are indispensable for a precise description of derivative chromosomes identified in banding cytogenetics.

• Small supernumerary marker chromosomes can still be best analyzed by mFISH.

• In the last few years, mFISH has become an important instrument for array-comparitive genomic hybridization confirmation.
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Abstract

Background: Complex small supernumerary marker chromosomes (sSMC) constitute one of the smallest subgroups

of sSMC in general. Complex sSMC consist of chromosomal material derived from more than one chromosome; the

best known representative of this group is the derivative chromosome 22 {der(22)t(11;22)} or Emanuel syndrome. In

2008 we speculated that complex sSMC could be part of an underestimated entity.

Results: Here, the overall yet reported 412 complex sSMC are summarized. They constitute 8.4% of all yet in detail

characterized sSMC cases. The majority of the complex sSMC is contributed by patients suffering from Emanuel

syndrome (82%). Besides there are a der(22)t(8;22)(q24.1;q11.1) and a der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)

(p11.21;q11.1) = der(13 or 21)t(13 or 21;18) syndrome. The latter two represent another 2.6% and 2.2% of the

complex sSMC-cases, respectively. The large majority of complex sSMC has a centric minute shape and derives from

an acrocentric chromosome. Nonetheless, complex sSMC can involve material from each chromosomal origin. Most

complex sSMC are inherited form a balanced translocation in one parent and are non-mosaic. Interestingly, there

are hot spots for the chromosomal breakpoints involved.

Conclusions: Complex sSMC need to be considered in diagnostics, especially in non-mosaic, centric minute shaped

sSMC. As yet three complex-sSMC-associated syndromes are identified. As recurrent breakpoints in the complex

sSMC were characterized, it is to be expected that more syndromes are identified in this subgroup of sSMC. Overall,

complex sSMC emphasize once more the importance of detailed cytogenetic analyses, especially in patients with

idiopathic mental retardation.

Keywords: Complex small supernumerary marker chromosomes (sSMC), Genotype-phenotype correlation,

Mosaicism, SSMC shape, Emanuel syndrome

Background
Small supernumerary marker chromosomes (sSMC) are

structurally abnormal chromosomes that cannot be identi-

fied or characterized in detail by banding cytogenetics, are

generally about the size of or smaller than a chromosome

20, and molecular cytogenetic techniques are necessary for

their comprehensive characterization [1]. It is estimated

that there are ~3 million of sSMC carriers in the human

population of 7 billion individuals. Fortunately, only in 1/3

of the cases the sSMC is associated with clinical abnor-

malities [2]. Besides some specific syndromes, i.e.

Pallister-Killian {= i(12p), OMIM #601803}, isochromo-

some 18p {i(18p), OMIM #614290}, cat-eye {i(22p ~ q),

OMIM #115470}, idic(15) {no OMIM number} and

Emanuel or derivative chromosome 22 {der(22)t(11;22),

OMIM #609029} syndromes [2], for the remaining sSMC-

cases only first steps towards genotype-phenotype correla-

tions were achieved [2,3].

sSMC can present with different shapes (ring-, centric

minute- and inverted duplication-shape), and consist in

the majority of the cases of pericentric chromosomal ma-

terial. Besides, sSMC can be derived from any part of the
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human chromosomes and form neocentrics [2,4]. If they

derived from the chromosomal ends, in most cases they

lead to partial tetrasomies [2]; for one of those conditions

also an OMIM entry was introduced recently (#614846 -

tetrasomy 15q26 syndrome).

One of the smallest subgroup of sSMC is constituted by

the so-called complex marker chromosomes [5]. ‘Complex’

are such sSMC which consist of chromosomal material de-

rived from more than one chromosome [1]. Thus, besides

the aforementioned large group of Emanuel or derivative

chromosome 22 {der(22)t(11;22), OMIM #609029} syn-

drome cases, there was identified a second recurrent

complex sSMC in 2010, designated as supernumerary

der(22)t(8;22) syndrome {OMIM #613700} [6].

In 2008 we speculated that the then described 22 com-

plex sSMC cases, excluding the der(22)t(11;22) cases,

could be part of an underestimated entity [5]. Here the yet

reported 412 complex sSMC cases are summarized based

on the sSMC database (http://www.fish.uniklinikum-jena.

de/sSMC.html, [3]) and analyzed for their chromosomal

constitution, breakpoints and special features.

Results

The 412 complex sSMC available in literature constitute

8.4% of all yet in detail characterized sSMC cases. The

majority of the complex sSMC cases is contributed by

der(22)t(11;22)(q23;q11.2) cases, i.e. 339/412 cases (82%).

Besides there are two additional types of complex sSMC

which have been observed in more than 2 independent

patients: the der(22)t(8;22)(q24.1;q11.1) and the der(13)t

(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) = der

(13 or 21)t(13 or 21;18) (Figure 1A). Both represent an-

other 2.6% and 2.2% of complex sSMC-cases (Figure 1B).

Concerning the shape, complex sSMC present in banding

cytogenetics normally as centric minutes: this accounts for

all Emanuel syndrome cases and 94% of the remainder

ones. Only 2% each of the complex sSMC (excluding

Emanuel syndrome cases) occur as inverted duplicated and

ring shaped sSMC (Figure 1C). All complex sSMC, apart

from one, derive from two chromosomes; only case 07-U-1

is reported to be constituted of three different chromosomes.

As summarized in Table 1, each of the human chromo-

somes, excluding chromosome 10, was involved in the

formation of complex sSMC already. All apart from 14

complex sSMC are derivatives of acrocentric chromo-

somes. Of the non-acrocentric complex sSMC, derivatives

of chromosome 18 were observed most often (3 times).

For 57 of the 73 complex sSMC (excluding Emanuel

syndrome) parental studies were done. As depicted in

Figure 1D 36% of those were de novo, the remainder

Figure 1 Complex sSMC: frequencies, shapes, origin and mosaicism. A) Schematic depictions of the three yet known complex sSMC leading

to specific syndromic conditions: the Emanuel = der(22)t(11;22), the der(22)t(8;22) and the der(13 or 21)(13 or 21;18) syndrome. B) Frequency of

the known three syndromes from A) and the other complex sSMC (others) depicted as a ring diagram. C) Distribution of the sSMC shapes

among the reported complex sSMC cases excluding the cases with Emanuel syndrome. D) Distribution of de novo and inherited cases among

complex sSMC excluding the cases with Emanuel syndrome. E) Complex sSMC tended to be mosaic only among the de novo cases.

Liehr et al. Molecular Cytogenetics 2013, 6:46 Page 2 of 6

http://www.molecularcytogenetics.org/content/6/1/46

2. Results                                                                                                                                                 29



Table 1 Complex sSMC cases summarized from Liehr (2013), not including 339 der(22)t(11;22)(q23;q11.2) cases

Karyotype Origin Mosaic Gender Case acc. to Liehr
(2013)

der(4)t(4;7)(q12;p22.1) n.a. - F 04-U-10

der(4)t(4;9)(q12;p21.2) mat - F 04-U-11

der(7)t(X;5;7)(p22.1;q35;p13q21) dn - F 07-U-1

der(8;12)(8pter→ 8q11.1::12q11.1→ 12pter) dn + M 08-U-10

der(9)t(3;9)(p25;q21.1) mat - F 09-U-22

r(11)t(11;20)(::11p11.1→ 11q12.1::20q13.1?2→ 20q13.32::) dn + F 11-U-12

der(11)t(11;13)(q25;q14) pat - M 11-U-13

der(12)t(4;12)(p16;q11) mat - n.a. 12-U-6

der(13)t(1;13)(q32;q12) n.a. - F 13-U-16

der(13)t(4;13)(q31.3;q13) mat - F 13-U-14

der(13)t(8;13)(p23.1;q12.11) mat - M 13-U-8

der(13 or 21;14)(q10;q10) n.a. + F 13/21-O-q10/4-1

der(13 or 21;15)(q10;q10) n.a. - F 13/21-O-q10/5-1

der(13 or 21)t(13 or 21;18)(q11;p11.2) dn - F 13/21-U-8

der(acro)t(acro;18)(q11;p11.21) dn - F 13/21-U-8d

der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) n.a. - F 13/21-U-8a

der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) dn - M 13/21-U-8b

der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) n.a. - F 13/21-U-8c

der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) n.a. - M 13/21-U-8e

der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) dn - F 13/21-U-8f

der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) dn - M 13/21-U-8g

der(13)t(13;18)(q11;p11.21) or der(21)t(18;21)(p11.21;q11.1) dn - M +21-U-35

der(14)t(3;14) mat n.a. n.a. 14-U-11

der(14)t(3;14)(p24.1;q21.1) mat - M 14-U-23

der(14)t(5;14)(q13;p13.3) n.a. - F 14-U-12

der(14)t(8;14)(p23;q22) n.a. - M 14-U-27

dic(14;15)(14pter- > 14q11.2::15q11.1- > 15pter) dn - M 14-O-q11.2/1-1

der(14)t(14;16)(q12;q21) n.a. - F 14-U-17

der(14)t(14;17)(q11.2;q25.3) mat - M 14-U-18

der(14)t(14;19)(14pter→ 14q11.1::19p13.12→ 19p13.2:) dn + F 14-U-26

der(14 or 22)t(2;14 or 22)(p11.2;q11.1) dn + F 14/22-U-19

der(15)t(15;?)(q24;?) dn - F 15-CW-3

der(15)t(9;15)(p24;q11.2) mat - M 15-O-q11.2/5-1

dic(15;22)(15q11.1;22q22.1) dn - M 15-U-6

der(Y;15) n.a. - F 15-CO-1

der(15)t(Y;15)(q12;q22) dn - M 15-U-10

der(15)t(8;15)(p23.2;q21.3) dn - M 15-U-208

der(15)t(9;15)(p12;q14) mat - F 15-U-189

mar(15;16) n.a. n.a. n.a. 15-U-160

der(15)t(15;16)(q13;p13.2) mat - F 15-U-15

inv dup(13;15)(p11.2p11.2) n.a. + F 15-U-161

der(15)t(15;16)(q13;q13) mat - M 15-U-206

der(15)t(15;16)(q13;p13.2) mat - F 15-U-207

der(15)t(15;17)(q12;q25.3) mat - M 15-U-214

der(15)t(15;18)(q11.1;p11.1 ~ 11.21) n.a. - M 15-U-205

der(17)t(17;acro)(q11;p11.2) dn - M 17-W-p13.3/1-1
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ones were inherited form a balanced translocation in

one parent. The majority of the latter group (83%) was

maternally derived. Interestingly, mosaic cases with karyo-

types 47,XN,+mar/46,XN were only seen in de novo com-

plex sSMC (Figure 1E). However, no balanced translocation

t(13;18)(q11;p11.21) or t(18;21)(p11.21;q11.1) was seen yet

in any of the corresponding nine cases.

In the 73 complex sSMC only 67 breakpoints were in-

volved. 44/67 breakpoints were unique, the remainder

observed two to 14 times (Table 2).

Finally, only seven of the 73 (~10%) complex sSMC-cases

not leading to Emanuel syndrome (case numbers 13/21-O-

q10/4-1, 13/21-O-q10/5-1, 14-O-q11.2/1-1, 15-O-q11.2/5-

1, 15-CO-1, 22-O-q11/3-1, 22-O-q11.21/3-1) were not

associated with clinical signs (Table 1). However, clinically

affected carriers of a der(13 or 21)t(13 or 21;18) inherited

the sSMC in parts by their mothers, which were considered

to be clinically normal [3].

Discussion
In 2008 complex sSMC seamed to be something rather

unusual, apart from the cases with Emanuel syndrome [5].

Since then ~4 times more complex sSMC were character-

ized and reported, thus enabling more detailed follow up

analyses of our previous studies.

~40% (408 of 1,040) of all centric minute shaped sSMC

are complex sSMC, including der(22)t(11;22) cases [3]; the

latter needs to be kept in mind, if a minute shaped sSMC

is detected in diagnostics. Moreover, if a centric minute

shaped sSMC turns out to be NOR-positive at one end,

thus being acrocentric derived, this means that there is a

70% chance that it is a complex sSMC: of the yet known

567 centric minute shaped sSMC 408 are complex [3].

Also, if a centric minute shaped sSMC is present in all

cells of the carrier, this might be another hint for a com-

plex sSMC. Centric minute shaped non-complex sSMC

are mosaic in ~70% of the cases [3], while complex sSMC

Table 1 Complex sSMC cases summarized from Liehr (2013), not including 339 der(22)t(11;22)(q23;q11.2) cases

(Continued)

der(18)t(2;18)(p23.1;q11.1) dn + F 18-U-24

der(18)t(8;18)(p23.2 ~ 23.1;q11.1) n.a. - M 18-U-10

der(19)t(18;19) n.a. n.a. F 19-U-15

der(18)t(18;21 or 22) fam n.a. n.a. 18-CW-2

der(21)t(4;21)(q32.1;q21.2) mat - F 21-U-15

der(21)t(7;21)(p21;q21.3) mat - M 21-U-7

der(13/21;22)(13/21pter→ 13/21q11::22q11.1 ~ 11.2→ 22q11.21 ~ 11.22: :22q11.21 ~ 11.22→
22pter)

dn - F 22-Wces-5-101

der(22)t(6;22)(p22.1;q11.21) ?pat - F 22-U-53

der(22)t(8;22)(q24.1;q11.2) pat - M 22-U-11

der(22)t(8;22)(q24.1;q11.1) mat - M/F 22-U-11a1/a2

der(22)t(8;22)(q24.1;q11.1) pat - M 22-U-11b

der(22)t(8;22)(q24.1;q11.1) mat - M 22-U-11c

der(22)t(8;22)(q24.1;q11.1) mat - M 22-U-11d

der(22)t(8;22)(q24.1;q11.1) mat - M 22-U-11e

der(22)t(8;22)(q24.1;q11.1) mat - M 22-U-11f

der(22)t(8;22)(q24.13;q11.21) n.a. - M 22-U-11g

der(22)t(8;22)(q24.13;q11.21) pat - F 22-U-11h

der(22)t(8;22)(q24.1;q11.2) mat - M 22-U-11i

der(22)t(8;22)(q24.1;q11.2) n.a. - M 22-U-11j

der(22)t(8;22)(p22;q11.21) mat - M 22-U-43

der(22)t(9;22)(p13.1;q11) mat - M 22-U-57

der(22)t(12;22)(p12;q11.2-12) dn - M 22-U-18

der(22)t(12;22)(p13.3;q12) mat - M 22-U-18a

der(22)t(14;22)(q31;q11) mat - F 22-O-q11/3-1

der(22)t(17;22)(17pter→ 17p10::22q10→ 22pter) mat - M 22-U-6

der(22)t(17;22)(p13.3;q11.21) pat - M 22-O-q11.21/3-1

der(22)t(19;22)(q13.42;q11.1) n.a. - M 22-U-50

r(15)ins(15;5)(?;q35.5q35.3)der(18)(:p11.21→ q11.1:)der(18)(:p11.1→ q11.1:) dn + M mult 3-9
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are mosaic in only ~10% of the cases. This indicates the

importance of cytogenetic analyses, as only this kind of

study enables to characterize the sSMC-shape and mosai-

cism reliably, and gives first hints on the possible complex

nature of an sSMC.

In 2010 the der(22)t(8;22)(q24.1;q11.1) syndrome was

reported. It was suggested that, like in Emanuel syndrome,

a 3:1 meiotic non-disjunction is causative for the occur-

rence of the corresponding sSMC in the offspring of t

(8;22)(q24.1;q11.1) carriers [6]. Besides in the present

study it became obvious that there is at least one more

syndrome present among the patients with complex

sSMC – nine patients with a der(13 or 21)t(13 or 21;18)

were reported yet. It is not known yet if it is always de

novo or can also be due to a balanced t(13;18)(q11;

p11.21) or t(18;21)(p11.21;q11.1) in one of the parents.

However, in contrast to most other complex-sSMC as-

sociated syndromes symptoms are very variable, even

though a complete trisomy 18p is induced [3].

64% of complex sSMC are due to parental balanced

translocations, 36% are de novo. This is a much lower rate

that seen in sSMC in general, with a de novo rate of 70%

[2; 3]. Still, like in other sSMC the majority of them is ma-

ternally derived [2].

At present it seems, complex sSMC fall into two major

groups: such with unique and such with (more) common

breakpoints. The later group comprises at present 23

different breakpoints involved 2 to 14 times in one of

the 73 complex sSMC. As reason for this preference sev-

eral mechanisms are discussed, including palindrome

mediated recurrent translocations [6], homologous re-

combination between olfactory receptor gene clusters

[7] or an involvement of fragile sites in the formation of

constitutional breakpoints [8].

While the formation of complex sSMC due to a paren-

tal balanced translocation is comprehensible, it is un-

clear how such sSMC are formed de novo. Mosaicism in

the germ-cells of one parent may be a possible explan-

ation. Also, as only de novo cases have been seen in mo-

saic yet (Figure 1E), postzygotic origin of de novo cases

has also to be considered.

As complex sSMC comprise in most cases besides

centromeric material also chromosomal parts from

gene-rich subtelomeric regions, it is not surprising that

in the majority of the cases the clinical consequences

are adverse. The seven cases with complex sSMC and no

clinical signs only comprised genomic regions without

dosage-dependant genes or even only heterochromatin.

Conclusions

In conclusion, complex sSMC are with 8.4% (including

Emanuel syndrome cases) or ~1.5% (excluding der(22)t

(11;22) cases) an essential part of the reported sSMC

cases. Their frequency was really underestimated in 2008.

Especially in cases of clinical abnormal patients with a

centric minute shaped sSMC present in 100% of the cells

a complex sSMC should be considered.

Methods

Data was acquired from the freely available sSMC database

(http://www.fish.uniklinikum-jena.de/sSMC.html, [3]). 412

sSMC cases were identified as being complex among the

4,913 sSMC cases summarized there. The 339 der(22)t

(11;22)(q23;q11.2) cases were not further analyzed; in Table 1

only the details on chromosomal constitution, parental ori-

gin, mosaicism and gender for the remainder 73 complex

sSMC cases are summarized. Data from Table 1 together

with previous knowledge on non-complex sSMC are bases

for the here reported and discussed results.
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Table 2 Breakpoints present between two and fourteen

times in 73 complex sSMC

Present X times Breakpoint

4q12

4q31.3 ~ q32.1

12q11

13q11 ~ q11.2

13q13 ~ q14

14/22q10 ~ q11.1

15q11.2 ~ 12

15q21.3 ~ q22

16p13.2

17p10 ~ q11

17q25.3

2 21q21.2 ~ 21.3

5q35

14q11.1 ~ 11.2

15q13

3 22q11.21 ~ q12

4 15q10 ~ q11.1

5 8p22 ~ p23

9 22q11.1 ~ 11.21

10 22q10 ~ 22q11.1

11 8q24.1

13/21q11

14 18p11.1 ~ 11.21
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Abstract Here a new fluorescence in situ hybridization
(FISH-) based probe set is presented and its possible appli-
cations are highlighted in 34 exemplary clinical cases. The
so-called pericentric-ladder-FISH (PCL-FISH) probe set
enables a characterization of chromosomal breakpoints es-
pecially in small supernumerary marker chromosomes
(sSMC), but can also be applied successfully in large inborn
or acquired derivative chromosomes. PCL-FISH was estab-
lished as 24 different chromosome-specific probe sets and
can be used in two- up multicolor-FISH approaches. PCL-
FISH enables the determination of a chromosomal break-
point with a resolution between 1 and ∼10 megabasepairs
and is based on locus-specific bacterial artificial chromo-
some (BAC) probes. Results obtained on 29 sSMC cases
and five larger derivative chromosomes are presented and

discussed. To confirm the reliability of PCL-FISH, eight of
the 29 sSMC cases were studied by array-comparative ge-
nomic hybridization (aCGH); the used sSMC-specific DNA
was obtained by glass-needle based microdissection and
DOP-PCR-amplification. Overall, PCL-FISH leads to a bet-
ter resolution than most FISH-banding approaches and is a
good tool to narrow down chromosomal breakpoints.

Keywords Chromosomal breakpoints . Fluorescence in situ
hybridization (FISH) . Pericentric-ladder-FISH (PCL-FISH) .

Small supernumerary marker chromosomes (sSMC)

Introduction

Chromosomal rearrangements detected in routine banding
cytogenetics currently can be characterized easily by fluores-
cence in situ hybridization (FISH) and/or array-comparative
genomic hybridization (aCGH) (Manolakos et al. 2010;
Weimer et al. 2011). Obviously, aCGH provides higher reso-
lutions; however, FISH still has several advantages over the
array-based approaches (Tsuchiya et al. 2008; Manolakos et
al. 2010). While aCGH is restricted to the analysis of unbal-
anced rearrangements, FISH can also do balanced ones. Also
chromosomal aberrations present in low mosaic level can be
characterized by FISH without problems (Iourov et al. 2008;
van der Veken et al. 2010), as this approach is single cell
directed.

The exact determination of breakpoints present in deriv-
ative chromosomes is one major goal of a cytogenetic anal-
ysis and therefore various FISH-probe sets have been
developed in the last decades (Liehr 2012a). Besides the
sets based on whole chromosome painting probes (multi-
plex-FISH0M-FISH (Speicher et al. 1996); spectral
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karyotyping0SKY (Schröck et al. 1996)) or all centro-
meric probes (centromere-specific M-FISH0cenM-FISH
(Nietzel et al. 2001)), also various FISH-banding
approaches (Liehr et al. 2002a) were introduced. One
early idea on how to implement FISH-banding was
chromosome-bar coding, using well mapped locus-
specific probes (Lengauer et al. 1992). However, no such
probe set was ever finished for routine use in human
chromosomes (Liehr et al. 2006a).

Here we present a new FISH probe set based on 174
bacterial artificial chromosome (BAC) probes called
pericentric-ladder-FISH (PCL-FISH). It enables a
chromosome-specific characterization of breakpoints with a
resolution between 1 and ∼10 megabasepairs (Mb) in small
and large inborn or acquired derivative chromosomes; it is
directed mainly toward the pericentric regions, as it is primar-
ily intended for characterization of small supernumerary
marker chromosomes (sSMC) (Liehr et al. 2004 and 2006b).
PCL-FISH was successfully applied in 29 cases with sSMC
and in five patients with larger derivative chromosomes.

Material and methods

PCL-FISH probe set

The PCL-FISH probe set (Fig. 1) is based on 174 BAC
probes (Table 1). As centromere-near “starting points”

for each of the chromosome-arms served probes used in
the previously published so-called subcentromere-specific
multicolor- (subcenM-) FISH probes set (Liehr et al. 2006b).
These probes are denominated Np1 or Nq1 in Table 1, where-
by “N” stands for the corresponding chromosome number.
Distal from the probes Np1 or Nq1 follow between two and
six other BAC probes with an average distance of 10 Mb to
each other. Those were selected from the published human
DNA-sequence. The BAC-probes were either kindly provided
from the Sanger Center, Cambridge, UK, or purchased via
BAC/PAC Chori, Oakland, CA, USA.

Fifty to 100 ng of DNA per BAC-probe was in vitro
amplified and labeled by degenerated oligonucleotide
primed polymerase chain reaction (DOP-PCR) (Telenius
et al. 1992). Amplification procedure followed a pub-
lished scheme (Fig. 2A in Liehr et al. 2002b). Here we
used only the fluorochromes SpectrumOrange (SO) and
diethylaminocoumarin (DEAC) for labeling of the BAC-
probes and combined them with the corresponding com-
mercially available centromeric probe labeled with a
green fluorochrome (Kreatech, Amsterdam, The Nether-
lands; see Fig. 1). Still, it would be no problem to also
label the BACs with more and/ or combined fluoro-
chromes to achieve additional colors and an individual
identification of the probes. As in the present study
PCL-FISH was exclusively used to narrow down chro-
mosomal breakpoints in derivative chromosomes with
known structures, a three-color FISH as shown in

Fig. 1 Karyogram combined of
two homologous for each
chromosome-position labeled
with the PCL-FISH probe set.
The chromosome-pairs are tak-
en from 24 different experi-
ments and one metaphase, each,
except for the Y-chromosomes,
which are from two different
metaphases. A cytogenetically
normal female and a male were
hybridized, each. Locus-
specific probes are labeled in
red and blue according to the
scheme shown in Table 1;
corresponding centromeric
probes labeled in green were
additionally applied
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Table 1 List of used BAC-probes, their official names, the abbreviation under which the probes are designated in Tables 2 and 3, the cytogenetic
localization of the probes (cytoband), molecular position and distance to centromere, acc. to hg18

Abbreviation BAC-probe Cytoband Position (hg18) Distance to centromere [Mb]/label

1p4 RP11-324 C23 1p22.2 91,953,842-91,986,170 29.11/blue

1p3 RP11-260 K3 1p21.2 99,670,767-99,835,823 21.26/red

1p2 RP11-392B1 1p13.3 111,226,829-111,256,235 9.84/blue

1p1 RP11-27 K13 1p13.1 117,282,240-117,407,086 3.69/red

1q1 RP11-30I17 1q21.1 144,174,052-144,361,891 1.77/red

1q2 RP11-205 M9 1q21.3 152,393,706-152,511,165 10.00/blue

1q3 RP11-343 F16 1q23.3 162,274,665-162,447,403 19.87/red

1q4 RP11-415 M14 1q25.1õ25.2 174,374,254-174,386,794 31.97/blue

2p4 RP11-440P5 2p16.1 60,553,094-60,688,102 30.31/blue

2p3 RP11-436 H22 2p13.3 70,583,656-70,774,208 20.23/red

2p2 RP11-303I4 2p12 80,657,637-80,808,678 10.19/blue

2p1 RP11-294I20 2p11.2 88,939,371-88,940,029 2.06/red

2q1 RP11-708D7 2q11.1 94,981,836-95,110,967 −0.59/red

2q2 RP11-332 H14 2q12.3 105,152,958-105,351,875 9.65/blue

2q3 RP11-115 F20 2q14.1 115,731,180-115,780,908 20.03/red

2q4 RP11-48 K7 2q14.3 127,180,319-127,253,883 31.48/blue

3p4 RP11-449E4 3p14 59,757,660-59,924,092 29.48/blue

3p3 RP11-152 N21 3p14.1 69,417,957-69,541,168 19.86/red

3p2 RP11-16 M12 3p12.3 78,395,761-78,564,998 10.84/blue

3p1 RP11-91A15 3p11.1 89,670,648-89,771,786 0.37/red

3q1 RP11-529P9 3q12.1 98,526,229-98,714,854 5.32/red

3q2 RP11-49I4 3q12.3 102,993,643-103,144,287 9.94/blue

3q3 RP11-572 C15 3q13.13õ13.2 113766654-113980366 20.80/red

3q4 RP11-299 J3 3q21.1 123,488,724-123,632,323 30.43/blue

4p4 RP11-339D20 4p15.31 19,642,622-19,763,590 29.07/blue

4p3 RP11-417 M17 4p15.1 29,249,879-29,381,035 19.32/red

4p2 RP11-617D20 4p14 38,270,133-38,416,177 10.28/blue

4p1 RP11-793 H20 4p12 47,946,771-48,061,917 0.64/red

4q1 RP11-365 H22 4q11 52,354,875-52,530,859 −0.05/red

4q2 RP11-24I7 4q13.1 62,331,990-62,451,691 9.93/blue

4q3 RP11-499 N1 4q13.3 72,066,561-72,265,534 19.67/red

4q4 RP11-570 L13 4q21.23 85,690,662-85,871,431 33.29/blue

5p4 RP11-88 L18 5p15.1 17,465,420-17,636,603 28.27/blue

5p3 RP11-351 N6 5p14.1 26,370,550-26,539,899 19.26/red

5p2 RP11-7 M4 5p13.2 36,988,518-37,177,098 8.26/blue

5p1 RP11-301A5 5p13.1 40,982,971-41,157,849 4.81/red

5q1 RP11-269 M20 5q11.1 49,913,068-50,093,939 −0.59/red

5q2 RP11-103A15 5q12.1 60,540,925-60,617,076 10.04/blue

5q3 RP11-551B22 5q13.2 69,777,035-69,816,329 19.28/red

5q4 RP11-90A9 5q14.1 79,882,591-80,063,088 29.38/ blue

6p4 RP11-192 H11 6p22.1 29,962,436-30,073,097 28.33/blue

6p3 RP11-100B10 6p21.2 38,054,811-38,217,746 20.18/red

6p2 RP11-334 H12 6p12.3 48,824,692-48,956,050 9.44/blue

6p1 RP11-421P21 6p11.2 57,228,514-57,292,599 1.11/red

6q1 RP11-349P19 6q12 65,158,548-65,208,779 1.76/red

6q2 RP11-256 L9 6q13 73,180,924-73,217,550 9.78/blue

6q3 RP11-25O6 6q14.1 83,407,494-83,562,457 20.01/red

6q4 RP11-538A16 6q16.1 93,629,676-93,823,839 30.23/blue
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Table 1 (continued)

Abbreviation BAC-probe Cytoband Position (hg18) Distance to centromere [Mb]/label

7p4 RP4-781A18 7p15.2 27,976,171-28,166,812 29.23/blue

7p3 RP11-302 L6 7p14.2õ14.1 37,482,196-37,597,749 19.80/red

7p2 RP11-651 K8 7p12.3 46,734,018-46,843,890 10.56/blue

7p1 RP11-10 F11 7p11.2 55,222,879-55,347,931 2.05/red

7q1 RP11-144 H20 7q11.21 61,606,122-61,791,403 0.51/red

7q2 RP11-53 M13 7q11.22 71,272,716-71,279,228 10.18/blue

7q3 RP11-448A3 7q21.11 81,263,387-81,349,902 20.16/red

7q4 RP11-313 N23 7q21.2 91,801,440-91,966,446 30.70/blue

8p4 RP11-366 J3 8p22 14,724,716-14,893,465 27.31/blue

8p3 RP11-115 K10 8p21.2 24,116,701-24,305,391 17.89/red

8p2 RP11-11 N9 8p12 32,909,252-33,028,630 9.71/blue

8p1 RP11-503E24 8p11.21 42,503,724-42,674,302 −0.47/red

8q1 RP11-197I11 8q11.23 53,135,835-53,175,019 5.04/red

8q2 RP11-430 H18 8q12.1 58,249,439-58,400,298 10.15/blue

8q3 RP11-409 C19 8q13.2 68,012,453-68,120,862 19.91/red

8q4 RP11-652 L3 8q21.11 78,197,078-78,348,048 30.10/blue

9p4 RP11-492A12 9p22.2 17,361,476-17,489,085 29.21/blue

9p3 RP11-438B23 9p21.2 27,866,315-28,042,166 18.66/red

9p2 RP11-61I3 9p13.2 37,607,753-37,776,264 8.92/blue

9p1 RP11-113O24 9p13.1 38,263,089-38,427,295 8.27/red

9q1 RP11-109D9 9q21.11 71,449,567-71,636,843 1.45/red

9q2 RP11-574 G7 9q21.2 79,668,774-79,884,072 9.67/blue

9q3 RP11-249 H20 9q21.33 89,375,412-89,446,315 19.38/red

9q4 RP11-535 C21 9q22.33 99,744,616-99,824,931 29.74/blue

10p4 RP11-575 N15 10p14 8,728,048-8,906,592 29.89/blue

10p3 RP11-51E20 10p12.31 20,784,567-20,938,614 17.86/red

10p2 RP11-350D11 10p11.23 30,675,157-30,865,135 7.93/blue

10p1 RP11-365P10 10p11.21 36,945,343-36,974,907 1.85/red

10q1 RP11-92P6 10q11.21 43,174,613-43,219,888 1.07/red

10q2 RP11-532 F4 10q11.23 52,151,487-52,328,351 10.05/blue

10q3 RP11-166B18 10q21.2 61,904,197-62,069,022 19.80/red

10q4 RP11-367 H5 10q22.1 71,504,053-71,672,097 29.40/blue

11p4 RP11-701I24 11p15 20,531,828.-20,709,763 30.69/blue

11p3 RP11-297A4 11p13 31,195,990-31,386,312 20.01/red

11p2 RP11-1 G18 11p12 41,077,222-41,230,282 10.17/blue

11p1 RP11-397 M16 11p11.2 48,260,247-48,436,072 2.96/red

11q1 RP11-644A8 11q12.1 56,558,447-56,613,460 0.16/red

11q2 RP11-157 K17 11q13.1 66,670,500-66,841,190 10.44/blue

11q3 RP11-263 C24 11q13.5 75,265,230-75,385,345 18.87/red

11q4 RP11-665E10 11q14.2 87,158,646-87,317,430 30.92/blue

12p4 RP11-298 J22 12p13.33 2,247,231-2,406,919 30.79/blue

12p3 RP11-161A14 12p13.1 13,255,212-13,430,711 19.77/red

12p2 RP11-12D15 12p12.1 22,250,749-22,369,579 10.83/blue

12p1 RP11-310I24 12p11.22 29,551,976-29,607,135 3.59/red

12q1 RP11-498B21 12q12 39,833,150-39,900,092 3.33/red

12q2 RP11-89 H19 12q13.11 46,571,184-46,627,459 10.07/blue

12q3 RP11-181 L23 12q13.3 56,118,000-56,288,135 19.62/red

12q4 RP11-542B15 12q15 66,138,644-66,250,773 29.64/blue

13q1 RP11-523 H24 13q12.11 19,137,338-19,306,540 0.74/red
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Table 1 (continued)

Abbreviation BAC-probe Cytoband Position (hg18) Distance to centromere [Mb]/label

13q2 RP11-904 N23 13q12.2õ12.3 27,754,495-27,943,490 9.35/blue

13q3 RP11-50D16 13q13.3 38,421,313-38,577,271 17.32/red

13q4 RP11-278A16 13q14.2 48,237,412-48,368,518 29.84/blue

13q5 RP11-100 C24 13q21.1 56,650,462-56,729,961 38.25/red

13q6 RP11-521 L15 13q21.33 67,417,069-67,493,555 49.02/blue

13q7 RP11-80 N10 13q31.1 80,203,304-80,367,022 61.80/red

14q1 RP11-14 J7 14q11.2 20,057,964-20,172,932 0.96/red

14q2 RP11-125A5 14q12 28,581,578-28,768,137 9.48/blue

14q3 RP11-111A21 14q21.1 38,968,002-39,128,583 19.87/red

14q4 RP11-831 F12 14q22.1 49,199,101-49,342,562 30.10/blue

14q5 RP11-701B16 14q23.1 59,039,114-59,210,327 39.94/red

14q6 RP11-486O13 14q24.2 69,613,365-69,799,632 50.51/blue

14q7 RP11-242P2 14q31.1 79,100,266-79,261,442 60.00/red

15q1 RP11-26 F2 15q11.1 20,542,381-20,704,897 2.14/red

15q2 RP11-261B23 15q13.2 28,285,619-28,402,108 9.89/blue

15q3 RP11-380D11 15q15.1 39,589,023-39,754,407 21.19/red

15q4 RP11-416 K5 15q21.2 48,177,332-48,330,980 29.78/blue

15q5 RP11-219B17 15q22.2 58,672,146-58,821,992 40.27/red

15q6 RP11-96 C21 15q23 68,530,717-68,651,733 50.13/blue

15q7 RP11-210 M15 15q25.2 78,397,187-78,541,279 60.00/red

16p4 RP11-295D4 16p13.3 4,320,670-4,461,705 29.94/blue

16p3 RP11-114I21 16p13.11 15,601,001-15,767,810 18.63/red

16p2 CTD-2515A14 16p12.1 24,668,123-24,856,494 18.63/blue

16p1 RP11-408D2 16p11.2 32,206,388-33,203,783 9.73/red

16q1 RP11-474B12 16q12.1 45,880,869-46,027,419 0.53/red

16q2 RP11-250E14 16q13 55,932,916-56,094,253 10.59/blue

16q3 RP11-167P11 16q22.1 66,238,838-66,393,296 20.89/red

16q4 RP11-358 L22 16q23.1 76,606,529-76,754,301 31.25/blue

17p3 RP11-135 N5 17p13.3 2,316,192-2,492,178 19.61/blue

17p2 RP11-471 L13 17p12 11,940,105-12,065,839 9.58/red

17p1 RP11-299 G20 17p11.1 22,177,022-22,177,618 −0.02/red

17q1 RP11-229 K15 17q11.2 26,452,331-26,604,331 3.25/blue

17q2 RP11-678 G7 17q12 33,529,231-33,710,106 10.33/red

17q3 RP11-100E5 17q21 38,799,089-38,932,045 15.60/blue

17q4 RP11-502 F1 17q22.23 51,736,564-51,905,016 28.54/red

17q5 RP11-147 L13 17q24.2 63,619,435-63,836,065 40.42/blue

18p3 RP11-835E18 18p11.3 5,183,555-5,306,587 12.91/blue

18p2 RP11-419 J16 18p11.2 10,132,108-10,203,413 5.20/red

18p1 RP11-178 F10 18q11.2 20,259,694-20,371,249 2.96/red

18q1 RP11-317 G20 18q12.1 28,046,335-28,218,210 10.75/blue

18q2 RP11-89 M10 18q12.3 37,455,958-37,620,554 20.16/red

18q3 RP11-346 H17 18q21.1 48,239,496-48,386,192 30.94/blue

18q4 RP11-13 L22 18q21.33 58,418,051-58,578,530 41.12/red

18q5 RP11-45A1 18q22.3 67,916,649-68,041,626 50.62/blue

19p3 RP11-110A24 19p13.3 209,326-374,094 26.33/red

19p2 RP11-177 J4 19p13.2 10,430,651-10,606,709 16.09/blue

19p1 CTC-451A6 19p12 22,661,070-22,729,110 3.97/red

19q1 CTD-2043I16 19q12 33,298,064-33,399,253 3.10/red

19q2 RP11-1096 L2 19q13.31 48,118,601-48,308,257 17.92/blue
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Fig. 2 was sufficient. The derivatives were characterized
before by cenM-FISH (Nietzel et al. 2001), subcenM-
FISH (Liehr et al. 2006b) or array proven multicolor
banding (aMCB) (Liehr et al. 2002b; Weise et al. 2008)
(results not shown).

Twenty metaphase spreads were analyzed, each, using
a fluorescence microscope (Axioplan 2 mot, Zeiss)
equipped with appropriate filter sets to discriminate
between all three fluorochromes and the counterstain
DAPI (Diaminophenylindol). Image capturing and pro-
cessing were carried out using an isis mFISH imaging
system (MetaSystems, Altlussheim, Germany).

Probe generation for and performing of array-comparative
genomic hybridization (aCGH)

The sSMC of cases 1, 4–7, 9, 12, and 15 were microdis-
sected, the DNA amplified by DOP-PCR (Telenius et al.
1992) and subsequently hybridized to a genome-wide array
(Liehr et al. 2011). aCGH was done according to standard

protocols using the 180 K chip of Agilent. Evaluation was
done with the scanner provided by Agilent and the
corresponding software.

Table 1 (continued)

Abbreviation BAC-probe Cytoband Position (hg18) Distance to centromere [Mb]/label

19q3 RP11-256B9 19q13.33õ13.41 57,561,808-57,749,888 27.36/red

20p3 RP11-12 M19 20p13 2,748,056-2,851,325 22.85/red

20p2 RP5-822 J19 20p12.1 15,512,928-15,602,699 10.10/blue

20p1 RP11-96 L6 20p11.21 25,465,310-25,522,324 0.18/red

20q1 RP11-243 J16 20q11.21 29,756,779-29,925,538 1.36/red

20q2 RP11-101E14 20q12 37,981,424-38,106,380 9.58/blue

20q3 RP11-644 F19 20q13.1 46,715,027-46,898,782 18.32/red

20q4 RP11-429E11 20q13.33 59,655,701-59,786,565 31.26/blue

21q1 RP11-89 H21 21q11.2 14,850,742-15,000,742 1.65/blue

21q2 RP11-132 H24 21q21.2 24,509,021-24,633,021 11.31/red

21q3 RP11-410P24 21q22.11 32,849,566-33,019,511 19.65/red

21q4 RP11-88 N2 21q22.3 43,556,416-43,769,964 30.36/blue

22q1 RP11-172D7 22q11 16,239,476-16,239,639 −0.06/blue

22q2 CTA-125 H2 22q12 24,555,255-24,728,767 8.26/red

22q3 RP11-89D12 22q12.3 32,849,566-33,019,511 16.55/red

22q4 RP1-100 G10 22q13.32 43,556,416-43,769,964 27.26/blue

Xp4 RP11-430 F3 Xp21.3 27,828,710-28,012,235 28.59/blue

Xp3 RP11-492O8 Xp21.1 36,531,334-36,664,328 19.94/red

Xp2 RP11-14O9 Xp11.3 46,616,221-46,695,415 9.90/blue

Xp1 RP11-465B24 Xp11.21 56,467,529-56,573,161 0.03/red

Xq1 RP11-403E24 Xq11.1 63,222,525-63,351,189 −1.88/red

Xq2 RP13-36 G14 Xq13.2 73,120,826-73,206,160 8.02/blue

Xq3 RP11-496 J2 Xq21.2 84,741,613-84,850,590 19.64/red

Xq4 RP11-358 K18 Xq21.33 94,900,252-95,033,143 29.80/blue

Yp2 RP11-515 L2 Yp11.31 2,838,554-2,845,472 9.25/blue

Yp1 RP11-122 L9 Yp11.2 4,917,081-5,077,603 7.02/red

Yq1 RP11-235I1 Yq11.2 15,267,383-15,447,103 0.97/red

Fig. 2 Representative PCL-FISH results for cases 1, 2, 9, 10, 15 and
27 are depicted
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Table 2 sSMC-cases solved by PCL-FISH – clinical details are avail-
able in Liehr (2012b) – i.e., sSMC homepage; the karyotype after
molecular cytogenetic characterization and array-CGH and the

breakpoints are given corresponding to the used BAC probes in
PCL-FISH, which are abbreviated acc. to Table 1 and the position
acc. to hg 18. Also the percentage of the sSMC is given

Case Case no.
sSMC
homepage

Karyotype sSMC
present
in %

Breakpoints p-arm / q-arm (Table 1)
array-CGH-data positions of breakpoints (hg 18)

1 03-O-p11.2/2-1 r(3)(::p11.2->q11.2::) 33 3p2õ3p1 / 3q2õ3q3

74.67-104.78 78.56-89.67 / 103.14-113.77

2 05-W-iso/1-4 inv dup(5)(pter->q10::q10->pter) 33 - / 5cepõ5q1

n.a. - / 50.09-50.50

3 05-W-p13.2/2-1 min(5)(:p13.2->q11.1:) 80 5p2 / 5cepõ5q1

n.a. 37.00-37.18 / 50.09-50.50

4 06-W-p11.2/1-1 min(6)(:p11.2->q11.1:)[55]/inv dup(6)(:q11.1->p11.2::
p11.2->q11.1:)[5]

60 6p2õ6p1 / 6cepõ6q1

57.09-64.11 48.96-57.23 / 63.40-65.16

5 06-W-p12.3/1-1 r(6)(::p12.3->q12::)[2]/r(6)(::p12.3->q12::)x2[5]/min(6)(:
p12.3->q12:)[9]/
min(6)(:p12.3->q12:)x2[2]/min(6)(:p12.3->q1?2::q1?2->
p12.3:)[1]/r(6)
(::p12.3->q12::),r(6;6)(::p12.3->q12::p12.3->q12::)[1]

86 6p2õ6p1 / 6q1õ6q2

51.55-66.71 48.96-57.23 / 65.21-73.18

6 06-W-p11.1/2-1 min(6)(:p11.1->q13:)[5]/r(6)(::p11.1->q13::)[2]/r(6)(::
p11.1->q13::p11.1->
q13::)[2]/r(6)(::p11.1->q13::p11.1->q13::p11.1->q13::
p11.1->q13::)[1]/
inv dup(6)(:p11.1->q13::p11.1->q13:)[10]

85 6p2õ6p1 / 6q1õ6q2

58.40-65.20 48.96-57.23 / 65.21-73.18

7 07-W-p11.2/1-2 min(7)(:p11.2->q11.21:)[5]/r(7)(::p11.2->q11.21::)[2]/r(7;7)
(::p11.2->
q11.21::p11.2->q11.21::)[1]

81 7p2õ7p1 / 7q1õ7q2

55.42-63.45 46.84-55.23 / 61.61-71.27

8 07-U-8 min(7)(:p11.2õ11.1->q11.2:) 81 7p2õ7p1 / 7q1õ7q2

n.a. 46.84-55.23 / 61.61-71.27

9 08-W-p11.21õ
11.22/1-1

r(8)(:p11.21õ11.22->q11.1:) 100 8p2õ8p1 / 8cepõ8q1

42.50-49.50 33.03-42.50 / 48.10-53.14

10 09-W-pter/1-1 del(9)(q21.1) 100 - / 9q1õ9q2

n.a. - / 71.64-79.67

11 09-W-iso/1-1 inv dup(9)(q12) 85 - / 9cepõ9q1

n.a. - / 70.00-71.45

12 11-U-15 min(11)(:p11.21->q13.1:) 70 11p1õ11cep / 11q1õ11q2

49.85-64.40 48.44-51.40 / 56.61-66.67

13 12-W-p11.1/2-1 r(12)(::p11.1->q14::)[7]/r(12)(::p11.1->q11::)[2] 25 12p1õ12cep / 12q2õ12q312p1õ12cep /
12cepõ12q1

n.a. 29.61-33.20 / 46.63-56.12 29.61-33.20 /
36.50-39.83

14 15-W-q13/4-1 inv dup(15)(pter->q11.1::q13->pter) 100 - / 15cepõ15q1 / 15q1õ15q2

n.a. - / 18.40-20.70 /20.70-28.29

15 15-CWw-148 inv dup(15)(q12õ13) 100 - / 15q1õ15q2

0.00-26.01 - /20.70-28.29

16 15-W-q14/4-1 der(15)(:q14->q13::q14->p11.1::p11.1->q14::q13->q14:) 25 - / 15q2õ15q3

n.a. - / 28.40-39.59

17 15-W-q13.2/1-3 inv dup(15)(q13.2) 100 - / 15q2õ15q3

n.a. - / 28.40-39.59

18 18-Wi-143 inv dup(18)(q11.1) 100 - / 18cep

n.a. - / 15.40-17.30
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Clinical cases

Overall, 33 clinical cases were studied by PCL-FISH (see
Tables 2 and 3). For cases listed in Table 2 the clinical details
are reported in Liehr (2012b). In general, the clinical indica-
tions were infertility or repeated abortions (like, e.g., also in
cases A, C and D, Table 3), dysmorphic features and/or mental
retardation (like in case B, Table 3) or prenatal detection of the
aberration due to different reasons (like in case E, Table 3).

Results

sSMC and large derivative chromosomes listed in Tables 2
and 3 were characterized by established FISH-approaches
and aCGH. Detailed results for these studies are not shown,
but the karyotypes defined after their application for each of
the cases are listed in Tables 2 and 3. Afterward for each
case the appropriate chromosome-specific PCL-FISH-probe
sets were applied. Representative PCL-FISH results for cases
1, 2, 9, 10, 15 and 27 are shown in Fig. 2.

In the present study it could be demonstrated that PCL-
FISH can be used to characterize chromosomal breakpoints
with a high accuracy on the single cell level (Tables 2 and
3). Results obtained by PCL-FISH were in complete con-
cordance with aCGH results in the eight sSMC cases 1, 4–7,
9, 12, and 15 studied by both approaches.

Overall, most of the breakpoints could be narrowed
down to ∼10 Mb, as the raster of the PCL-FISH-probe
set lets us expect. However, when chromosomal break-
points were located between the centromere and the first
proximal probe in the p- or q-arm, the characterized
critical region could be smaller, i.e., between 0.03 and
5.04 Mb in size (cases 2–4, 9, 11–14, 18–19, 21, 27
and C). The same was true if the break was between
the distal applied probe of a chromosome arm and its
end, like in cases 28, 29, D and E (2.84 to 3.17 Mb);
however, with respect to the chromosomal aberration
studied it also could be larger than 10 Mb: in case 27
it was 50.88 Mb, however, as it was obvious that the
sSMC was not much larger than the most distal probe
of the PCL-FISH set the break must have appeared

Table 2 (continued)

Case Case no.
sSMC
homepage

Karyotype sSMC
present
in %

Breakpoints p-arm / q-arm (Table 1)
array-CGH-data positions of breakpoints (hg 18)

19 18-Wi-132 inv dup(18)(q11.1) 100 - / 18cep

n.a. - / 15.40-17.30
20 19-U-10 r(19)(::p13.1->q13.1::)[17]/r(19;19)(::p13.1->

q13.1::p13.1->q13.1::)[4]
88 19p2õ19p1 / 19q2õ19q3

n.a. 10.61-22.66 / 48.31-57.56

21 20-U-11 r(20)(::p11.1->q11.23::)[10]/ min(20)(:p11.1->
q11.23:)[2]

90 20p1õ20cep / 20q2õ20q3

n.a. 25.52-25.70 / 38.11-46.72

22 21-W-q11.2õ21.1/
1-2

del(21)(q11.2õ21.1:) 25 - / 21q1õ21q2

n.a. - / 15.00-24.51

23 22-Wces-5-86 inv dup(22)(q11.21) 100 - / 22q2

n.a. - / 24.56-24.73

24 22-Wces-5-94 inv dup(22)(q11.23õ12.1) 37 - / 22q1õ22q2

n.a. - / 24.73-32.85

25 22-Wces-5-130 inv dup(22)(q11.21) 100 - / 22q1õ22q2

n.a. - / 24.73-32.85

26 plus21-U-39 min(22)(pter->q11.21) 73 - / 22q2

n.a. - / 24.56-24.73

27 minX-p11.1/6-1 min(X)(:p11.1->q22:) 15 Xp1-Xcep / Xq4õXtel

n.a. 56.57-56.60 / 95.03-145.91

28 m-iY-p11.32/1-3 inv dup(Y)(p11.32) 20 YpterõYp2 / -

n.a. 0.00-2.84 / -

29 m-rY-p11.3/2-4 r(Y)(::p11.3->q11.2::)[7]/r(Y)(::p11.3->q11.2::
p11.3->q11.2::)[3]

53 YpterõYp2 / Yq1õYq2

n.a. 0.00-2.84 / 15.45-22.59
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between positions 95.03 and ∼110 of the X-chromosome
here. Finally, it could also happen that the break
appeared directly in the region spanned by one of the
applied probes, like in cases 3, 23 and 26; then the
break event could be characterized with an accuracy of
0.17 and 0.18 Mb in the studied cases.

In several of the sSMC cases there were so-called cryptic
mosaics (Liehr et al. 2010), i.e., the cells with the sSMC split
into different subclones, distinguishable only by FISH. In case
13 this was expressed as two sSMC derived from chromo-
some 12, both, with identical breakpoints in the short, but
different ones in the long arm. As one of the sSMC of this case
was completely heterochromatic the sSMC of this case would
not be resolved comprehensively by aCGH alone.

Discussion

During the last decades numerous FISH-approaches
were developed (Liehr 2012a). M-FISH/ SKY is able
to characterize the origin and/or composition of larger
euchromatic derivative chromosomes (Speicher et al.
1996; Schröck et al. 1996), cenM-FISH (Nietzel et al.
2001) and subcenM-FISH (Liehr et al. 2006b) can iden-
tify the chromosomal origin of sSMC, FISH-banding
and use of locus specific probes enables a better break-
point characterization than banding cytogenetics (Weise
et al. 2002; Manvelyan et al. 2007), and aCGH can
narrow down chromosomal breakpoints to some 10 kb

or less (Weise et al. 2008). As aCGH has several
limitations and is normally used for the analysis of
multiple cells, it can be complemented easily by FISH,
which is single cell directed. Also aCGH is an ap-
proach, not accessible by big parts of the worldwide
cytogenetically working community. Thus, PCL-FISH
was developed primarily to enable the size characteriza-
tion of mosaic and non-mosaic sSMC based on a simple
two- or three color molecular cytogenetic technique.
Such a test system can be important especially in pre-
natal sSMC cases, where a comprehensive characteriza-
tion is necessary to enable a sound genotype-phenotype
correlation. As PCL-FISH was developed to be used in
small derivative chromosomes, large chromosomes are
not covered completely by the 10 Mb raster. Nonethe-
less, as demonstrated in cases A-E the new probe set
can be helpful for breakpoint characterization there as
well.

The PCL-FISH approach is specially suited for the char-
acterization of derivative chromosomes present in mosaic,
like those present in all sSMC cases from Table 2 besides
cases 9, 10, 14–15, 17–19, 23 and 25 and cases B, D and E
(Table 3). Especially in those cases with sSMC presence of
below 50 % of the cells (cases 1, 2, 13, 16, 22, 24, 27 and
28) PCL-FISH is extremely helpful, as aCGH may be un-
able to detect these sSMC at all. Also PCL-FISH allows the
characterization of sSMC present as cryptic mosaics (Liehr
et al. 2010). In most such cases the different sSMC had
different shapes but the breakpoints still were the same (e.g.,

Table 3 Non-sSMC-cases
solved by PCL-FISH; break-
points are given in principle as in
Table 2

case karyotype breakpoints p-arm /
q-arm (Table 1)
positions of
breakpoints (hg 18)

A 46,XY,inv(10)(p11.1q21.3) 10p1õ10cep /
10q1õ10q2

36.97-38.80 / 43.22-
52.15

B 46,XY,der(14)(pter->q22.1õ22.3::q11.2->qter)[46]/46,XY[4] 14q1õ14q2 /
14q4õ14q5

20.17-28.58 / 49.34-
59.04

C 46,inv(14)(p11.2q13.2õ21.1) 14cepõ14q1 /
14q2õ14q3

19.10-20.06 / 28.77-
38.97

D 47,XX,r(21)(::p11.2->q22.3::).+min(21)(:pter->p11.2:) or r(21)(::p13->
p11.2::)[1]/46,XX,r(21)(::p11.2->q22.3::)[33]/46,XX,r(21;21)(::p11.2->
q22.3::p11.2->q22.3::)[5]/46,XX[1]

- / 21q4õ21qter

- / 43.77-46.94

E 46,XN,del(21)(:p11.1õ11.2->q22.3:)[7]/46,XN,r(21)(::p11.1õ11.2->
q22.3::)[4]/46,XN,der(21)(:q11.2->p11.1õ11.2::p11.1õ11.2->q22.3:)
[8]/45,XN,-21[1]

- / 21q4õ21qter

- / 43.77-46.94
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cases 4–7, 20 and 29). However, in some instances the
breakpoints can differ, like in case 13; here PCL-FISH could
easily define all three involved breakpoints.

In general, PCL-FISH is a pericentromeric region direct-
ed bar-code FISH approach. However, to the best of our
knowledge none of the previously published ones were
created to constitute a 10 Mb raster along chromosomal
regions. Also none of the locus-specific-probe-based bar-
code FISH approaches were ever established for the whole
human genome (Liehr et al. 2006a). PCL-FISH can be used
immediately after identification of the chromosomal origin
of a derivative; however, this was not done in the present
study. Here all derivatives were previously characterized by
well established molecular cytogenetic approaches and/or
aCGH; those results are listed in Tables 2 and 3 and served
to control the accuracy of the new established probe set.

Overall, it could be demonstrated that PCL-FISH charac-
terizes chromosomal breakpoints reliably (Tables 2 and 3),
as they were in concordance with previous FISH and aCGH
results. In those breakpoints not characterized by aCGH,
PCL-FISH not only confirmed the previous FISH-results
but concretized them with an accuracy of 0.03 to ∼10 Mb,
as outlined in Results.

In conclusion we present a new FISH probe set easily and
effectively applicable in clinical cytogenetic routine diag-
nostics. It could be enlarged by additional probes, e.g.,
BACs in 10 Mb distance covering all human genome and
not only the pericentric regions. Also, applications of PCL-
FISH in tumor cytogenetics, as well as in evolution research
studies are principally possible.
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Somatic Mosaicism in Cases with Small Supernumerary Marker Chromo-
somes 
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Abstract: Somatic mosaicism is something that is observed in everyday lives of cytogeneticists. Chromosome instability 
is one of the leading causes of large-scale genome variation analyzable since the correct human chromosome number was 
established in 1956. Somatic mosaicism is also a well-known fact to be present in cases with small supernumerary marker 
chromosomes (sSMC), i.e. karyotypes of 47,+mar/46. In this study, the data available in the literature were collected con-
cerning the frequency mosaicism in different subgroups of patients with sSMC. Of 3124 cases with sSMC 1626 (52%) 
present with somatic mosaicism. Some groups like patients with Emanuel-, cat-eye- or i(18p)- syndrome only tend rarely 
to develop mosaicism, while in Pallister-Killian syndrome every patient is mosaic. In general, acrocentric and non-
acrocentric derived sSMCs are differently susceptible to mosaicism; non-acrocentric derived ones are hereby the less sta-
ble ones. Even though, in the overwhelming majority of the cases, somatic mosaicism does not have any detectable clini-
cal effects, there are rare cases with altered clinical outcomes due to mosaicism. This is extremely important for prenatal 
genetic counseling. Overall, as mosaicism is something to be considered in at least every second sSMC case, array-CGH 
studies cannot be offered as a screening test to reliably detect this kind of chromosomal aberration, as low level mosaic 
cases and cryptic mosaics are missed by that.  
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SMALL SUPERNUMERARY MARKER CHROMO-
SOMES (sSMC) 

 In 1956, the exact chromosomal number in humans was 
established [1]. Since then it was possible to delineate nu-
merical chromosomal aberrations in any body tissue where 
chromosomes could be prepared from, including clinical [2] 
and tumor cases [3]. After the introduction of molecular cy-
togenetics [4-7], it became even possible to analyze numeri-
cal chromosomal aberrations in non-dividing cells [8]. By 
that also low-level chromosomal aberrations could be de-
tected in tumor [9-13], various clinical [14-18] and neuronal 
diseases [19-27], embryonic tissues [28-32] and different 
tissue types [9, 13, 15, 33-35]. Overall it can be stated that 
chromosome instability is one of the main causes of large-
scale genome variation [36-39]. For review of cytogenetic 
and molecular cytogenetics see Refs. [4-5, 40].  
 Small supernumerary marker chromosomes (sSMC) are 
reported in 0.043% of newborn infants, 0.077% of prenatal 
cases, 0.433% of mentally retarded patients and 0.171% of 
subfertile people [41]. They are defined as structurally ab-
normal chromosomes that cannot be identified or character-
ized unambiguously by conventional banding cytogenetics  
 
 

*Address correspondence to this author at the Institute of Human Genetics 
and Anthropology, Kollegiengasse 10, D-07743 Jena, Germany; Tel: 0049-
3641-935533; Fax: 0049-3641-935582; E-mail: i8lith@mti.uni-jena.de 

alone, and are generally equal in size or smaller than a chro- 
mosome 20 of the same metaphase spread; sSMC can either  
be present additionally in (1) an otherwise normal karyotype,  
(2) a numerically abnormal karyotype (like Turner- or  
Down-syndrome) or (3) a structurally abnormal but balanced  
karyotype with or without ring chromosome formation [42].  
sSMCs are normally detected by banding cytogenetics in  
mentally retarded patients, in subfertile persons or during  
prenatal diagnosis and particularly prenatally ascertained  
ones, are not easy to correlate with a clinical outcome. It is  
known that ~30% of sSMCs are derived from chromosome  
15; ~11% are i(12p) = Pallister-Killian, ~10% are der(22)- 
Emanuel-,~7% are inv dup (22)-cat-eye- and ~6% are i(18p)- 
syndrome associated sSMC [42]. 
 sSMC are for several reasons still a problem in clinical 
cytogenetics: (i) they are too small to be characterized for 
their chromosomal origin by traditional banding techniques 
and require molecular (cytogenetic) techniques for their 
identification [41]; (ii) apart from the correlation of about 
one-third of the sSMC cases with a specific clinical picture, 
as mentioned above, most of the sSMCs have not been corre-
lated with clinical syndromes, even though progress was 
achieved, recently [43, 44]; (iii) sSMC can be harmful due to 
different mechanisms like induction of genomic imbalance 
and/or uniparental disomy [42]; (iv) also sSMC can be found 
just by chance and cannot be correlated with the clinical 
problems of a patient [44]; finally (v) the percentage in 
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which an sSMC is present can, but must not have an influ-
ence on the clinical outcome [42-44].  
 Here we focus on the latter mentioned problem – the 
regularly appearing somatic mosaicism in cases with an 
sSMC.  
 Mosaicism in association with sSMC is a well-known 
fact. Crolla (1998) [45] summarized 144 sSMC cases ex-
cluding those derived from chromosomes 15 and 22, 78 of 
which (54%) showed mosaic karyotypes. To get a more de-
tailed view on mosaicism in sSMC the following subgroups 
are focused separately below: cases with sSMC duplication 
and multiple sSMC, cases with four known ‘sSMC-

syndromes’ Pallister-Killian-, i(18p)-, Emanuel-, and cat-
eye-syndrome, cases with sSMC and Prader-Willi- and An-
gelman-syndrome, cases with an sSMC present in a structur-
ally abnormal but balanced karyotype, neocentric sSMC 
cases and patients with numerically abnormal basic karyo-
types. The remaining sSMC with a normal basic karyotype 
of 46 chromosomes plus an sSMC are the group of patients 
this review starts with. 

SOMATIC MOSAICISM IN sSMC PRESENT IN A 
NORMAL BASIC KARYOTYPE  

 According to Liehr (2010) [44] 731/1512 sSMC cases 
(52%) studied by cytogenetics are mosaic (see Table 1). 

Table 1. Cases with Mosaics 47,+mar, Excluding Cases with Known Syndromes, with Neocentric sSMC and such with Unclear 
Mosaicism Status 

sSMC derived from chromosome Number of cases with 47,+mar[100%] Total number of sSMC cases Cases with mos 47,+mar/46  

1 6 67 91% 

1/5/19 0 8 100% 

2 6 36 83% 

3 7 21 67% 

4 7 21 67% 

5 10 34 71% 

6 2 14 86% 

7 5 23 78% 

8 11 92 88% 

9 4 59 93% 

10 5 18 72% 

11 3 16 81% 

12 6 29 79% 

13 7 9 22% 

13/21 54 84 36% 

14 62 99 37% 

14/22 31 49 37% 

15 361 459 21% 

16 4 46 91% 

17 6 26 77% 

18 14 43 67% 

19 7 40 83% 

20 7 33 79% 

21 12 25 83% 

22 78 115 32% 

acro 3 6 50% 

X 7 27 74% 

Y 6 13 54% 

overall 731 1512 52% 

acrocentric 608 846 28% 

non-acrocentric 123 666 82% 
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However, there is a strong difference between acrocentric 
and non-acrocentric derived sSMC: while 72% of acrocentric 
derived sSMC present no mosaic, 82% of non-acrocentric 
derived sSMCs are mosaic.  
 The real grade and complexity of mosaicism seems to be 
even slightly higher as recently repeatedly cryptic mosaicism 
was detected in sSMC cases by molecular cytogenetics. 
There were either cases showing an sSMC in all studied 
metaphase spreads, however, interphase-FISH in uncultured 
cells showed a mosaic situation like in case 16-CW-2 [44]. 
More often it is found that more than one variant of an sSMC 
is present in different studied cells of a patient. As summa-
rized in Table 2, at least 5% of sSMC cases have, after a 

detailed molecular cytogenetic analysis, a more complex 
mosaicism than suggested after simple cytogenetic diagnos-
tics. In 20% of these cases, unexpected complex somatic 
mosaicism was detectable where cytogenetics did not sug-
gest any mosaicism, i.e. in cases 04-U-7, 08-W-p11.2/1-2, 
11-O-p11.1/2-1, 11-U-9, 13-U-13, 15-W-q11.1+q11.2/1-1, 
21-O-q11.21/1-1, 21-U-5, 22-O-q11.1/5-1, 22-O-q11.1/5-2, 
0X-W-p11.?3/1-1, 0X-W-p11.21/1-1 [44]. Interestingly, 
acrocentric derived sSMC are by far more stable than non-
acrocentric derived ones (2% versus 9%, Table 2).  
 Cryptic mosaicism appears as some sSMC tend to rear-
range and/or be reduced in size during karyotypic evolution. 
This can lead to double ring formation or inverted duplica-

Table 2. Cases with Cryptic Mosaics 47,+mar, Excluding Cases with Known Syndromes, with Neocentric sSMC and such with 
Unclear Mosaicism Status 

sSMC derived from chromosome Number of cases with cryptic mosaicism  Number of cases with cryptic mosaicism 

1 0/67 0% 

1/5/19 0/8 0% 

2 2/36 5% 

3 5/21 24% 

4 1/21 5% 

5 5/34 15% 

6 4/14 29% 

7 4/23 17% 

8 8/92 9% 

9 6/59 10% 

10 0/18 0% 

11 4/16 25% 

12 2/29 7% 

13 2/9 15% 

13/21 0/84 0% 

14 2/99 2% 

14/22 0/49 0% 

15 4/459 1% 

16 3/46 19% 

17 0/26 0% 

18 2/43 5% 

19 6/40 15% 

20 4/33 12% 

21 2/25 8% 

22 5/115 4% 

acro 0/6 0% 

X 2/27 7% 

Y 0/13 0% 

overall 73/1512 5% 

acrocentric 15/846 2% 

non-acrocentric 58/666 9% 
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tion starting from a centric minute-shaped chromosome and 
in the end to the formation of different variants and a highly 
complex mosaic as some of the new variants can also be 
degraded in a subset of the studied cells [46]. 
 In summary, somatic mosaics are to be expected in at 
least 50% of sSMC cases with normal basic karyotype. More 
complex mosaics can be met in up to 10% of the cases; how-
ever, the overall rate of mosaic cases is not significantly al-
tered by cryptic mosaicism, while the genetic complexity of 
individual cases may be severely influenced. 

SOMATIC MOSAICISM IN CASES WITH sSMC DU-
PLICATION AND MULTIPLE sSMC 

 sSMC in a small subset of cases tend to duplicate, lead-
ing to a karyotype 48,+marx2 [42]. Up to now 64 such cases 
are reported [44] and 45% of those are derived from non-
acrocentric chromosomes (Table 3). While, cases with ac-
rocentric derived sSMC tend to be by mosaic only in 54% of 
the cases, non-acrocentric derived ones are always mosaic 
with an exception of 1/29 reported patients (Table 3). Thus, 
in sSMC duplication cases we find a similar situation as in 

Table 3. Cases with Mosaics 48,+marx2 Excluding Cases with Known Syndromes, with Multiple and Neocentric sSMC and such 
with Unclear Mosaicism Status 

sSMC derived from chromosome Number of cases with 48,+marx2[100%] Total number of sSMC cases Cases with mosaic 

1 n.a. 2 (diff. sizes) 100% 

1/5/19 n.a. n.a. n.a. 

2 n.a. 2 100% 

3 n.a. 2 (diff. sizes) 100% 

4 n.a. 1 / 1 (diff. sizes) 100% 

5 n.a. 1 / 1 (diff. sizes) 100% 

6 n.a. 1 / 1 (diff. sizes) 100% 

7 n.a. n.a. n.a. 

8 n.a. 2 / 1 (diff. sizes) 100% 

9 n.a. 2 / 1 (diff. sizes) 100% 

10 n.a. n.a. n.a. 

11 n.a. n.a. n.a. 

12 n.a. n.a. n.a. 

13 1 1 0% 

13/21 1 1 / 1 (diff. sizes) 50% 

14 2 3 / 1 (diff. sizes) 50% 

14/22 1 3 67% 

15 11 22 50% 

16 n.a. 1 / 1 (diff. sizes) 100% 

17 n.a. 1 / 1 (diff. sizes) 100% 

18 n.a. n.a. n.a. 

19 1 1 0% 

20 n.a. 3 / 1 (diff. sizes) 100% 

21 n.a. 1 100% 

22 n.a. 2 100% 

acro n.a. n.a. n.a. 

X n.a. 1 100% 

Y n.a. 1 100% 

overall 17 64 73% 

acrocentric 16 35 54% 

non-acrocentric 1 29 97% 
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cases with one single sSMC and a karyotype 47, +mar con-
cerning mosaicism.  
 Multiple sSMC cases [42] differ from sSMC duplication 
ones by the fact that the observed sSMC are not derived 
from the identical chromosome. Only 48 such cases are 
known by now [44], having between 2 and 7 sSMC of dif-
ferent origin, each; and all reported cases with multiple 
sSMC are mosaic. Formation of this rare cytogenetic condi-
tion is unclear, even though polysomic rescue or triploid 
rescue maybe suggested. As in most cases markedly chro-
mosomal imbalances are induced by multiple sSMC pres-
ence, ~90-95% of them are correlated with clinical symp-
toms, irrespective of mosaicism status detectable in periph-
eral blood.  

SOMATIC MOSAICISM PRESENT IN THE FOUR 
KNOWN ‘sSMC-SYNDROMES’: PALLISTER-KILLIAN-, 
I(18P)-, EMANUEL-, AND CAT-EYE-SYNDROME 

 Somatic mosaicism is reported to different extents in four 
sSMC-related syndromes.  
 Patients suffering from Pallister-Killian-syndrome (PKS) 
due to the presence of an additional isochromosome 12p are 
known to have somatic mosaicism in practically every case. 
In peripheral blood the +(12p) tends to be lost either already 
during pregnancy or shortly after birth in practically all cells. 
In the alternatively studied skin fibroblasts, the sSMC de-
rived from chromosome 12 is normally easily to detect in 
>70% to 100% of the cells [47]. However, besides a mosaic 
of cells with 46 and 47 chromosomes exceptional cases also 
with two different shapes of sSMC (12-Wpks-4, 12-Wpks-
159, [44]) or two isochromosomes 12p (12-Wpks-174 [44]) 
are also reported.  
 In isochromosome 18p syndrome mosaicism is rather 
rare. But also here exceptional cases are known having the 
full clinical phenotype but normal karyotype in some of the 
body cells (18-Wi-42, 18-Wi-153, 18-Wi-154, 18-Wi-157 
[44]). In case 18-Wi-41 [44] the i(18p) was derived from the 
clinically normal mother; the latter had the i(18p) in only 4% 
of her peripheral blood cells. Also, an interesting case of 
somatic mosaicism is 18-Wi-158 [44] showing prenatally an 
i(18p) in 35% of the amnion cells but postnatal only normal 
cells in peripheral blood, being a normal child.  
 To the best of our knowledge no mosaic cases are known 
by now for Emanuel-syndrome (ES) [44]. Also in cat-eye-
syndrome (CES) mosaicism is rather rare. sSMC derived 
from chromosome 22 having two different shapes were seen 
in CES (22-Wces-2 [44]) or minimal mosaicism with a nor-
mal cell line (22-Wces-3-03, 22-Wces-5, 22-Wces-5-119 
[44]).  
 Overall, somatic mosaicism is, compared to other sSMC 
derived from the corresponding chromosomes, over-
represented in PKS (100% vs. 79%) and under-represented 
in i(18p) syndrome (4% vs. 67%), ES (0% vs. 32%) and CES 
(3% vs. 32%). 

SOMATIC MOSAICISM IN PRADER-WILLI- AND 
ANGELMAN-SYNDROME WITH sSMC 

 26 sSMC cases with Prader-Willi-syndrome (PWS) and 7 
with Angelman-syndrome (AS) can be found in the literature 

[44]. 15 of these are PWS (58%) while only 1 of these AS 
cases (14%) is mosaic with respect to sSMC presence [44]. 
As the corresponding syndromes were caused either by uni-
parental disomy or microdeletion the sSMC presence has no 
direct influence on the clinical outcome; neither has mo-
saicism. 

SOMATIC MOSAICISM IN sSMC PRESENT IN 
STRUCTURALLY ABNORMAL BUT BALANCED 
KARYOTYPE  

 Another rare cytogenetic variant of sSMC presence is 
that of a structurally abnormal but balanced karyotype 
(McClintock mechanism) [48]. Such cases can either be 
connected with a neocentromere formation (see section be-
low) or both the derivatives share the available centromeric 
alpha-satellite sequences. If in such case mosaicism appears, 
i.e. loss of the sSMC, relevant genetic material is lost and 
this leads normally to clinical problems as described for the 
following cases: 03-W-p11/1-1, 04-W-p15.3/1-1, 04-W-
p12/1-1 [44]. If no or only very low grade mosaicism is pre-
sent the carrier of such a karyotype can be completely nor-
mal (e.g. 02-O-p12/1-1, 06-O-p22.3/1-1, 06-O-p22.3/1-1, 
08-O-p11.1/2-1, 12-U-4, 17-O-p11.2/2-1, mother of 19-W-
10/2-1, mother of 22-W-q11.2/2-1 [44]).  

SOMATIC MOSAICISM IN NEOCENTRIC sSMC 

 For mosaicism in neocentric sSMC formed by McClin-
tock mechanism, [48] the same holds true, like for the 
aforementioned centric sSMC present in structurally abnor-
mal but balanced karyotype. If balanced and no or only 
minimal mosaicism is present, the carriers of such a chromo-
somal condition are clinically normal. If the neocentric 
sSMC is lost in a higher percentage of the body cells this has 
an adverse prognosis. 

 In general, in at least around 50% of the cases with a 
neocentric sSMC somatic mosaicism is observable (Table 4). 
Strikingly, as in centric sSMC, mosaicism is more frequent 
in non-acrocentric derived compared to acrocentric derived 
ones (58% vs. 24%).  

SOMATIC MOSAICISM IN sSMC PRESENT IN NU-
MERICALLY ABNORMAL BASIC KARYOTYPES 

 As above mentioned, sSMC can appear in a numerically 
normal basic karyotype of 46 chromosomes, but also in 
numerically abnormal basic karyotypes [42]. Up to now, 
sSMC are reported additionally to a basic karyotype 45, X (= 
Turner syndrome), 47, XXY (= Klinefelter syndrome), 47, 
XXX (triple-X syndrome) and 47, +21 (Down syndrome) 
[44, 49-51]. 

 542 cases are available in the literature with a basic 
karyotype typical for Turner syndrome and an additional 
sSMC, i.e. 46,X,+mar [44, 49]. Only 73 of these are reported 
without mosaicism; thus, 76% of these Turner syndrome 
cases are mosaic [44]. 

 Only three cases, each of them are known by now with 
Klinefelter- or triple-X syndrome and an additional sSMC. 
Concerning the Klinefelter-syndrome two cases of those are 
mosaic (07-U-6, 0X-U3) and one not (09-U5) [44]. For tri-
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ple-X syndrome the same holds true: cases 09-U16 and 14-
O-q11.1/1-5 are mosaic, case 14-U-5 is not [44].  
 For sSMC, at present additionally to a trisomy 21 
(Down-syndrome), information on mosaic status is available 
in 16 cases; 7 of those (44%) have somatic mosaicism with a 
cell line 47, +21 without sSMC [44].  
 Overall, mosaicism is a frequent finding when an sSMC 
is present additionally to a numerically abnormal basic 
karyotype.  

SOMATIC MOSAICISM IN sSMC AND THE RE-
SULTING PITFALLS 

 Summarizing all above mentioned groups, 1626 of 3124 
cases with sSMC (52%) present with somatic mosaicism. 
Even though, expressed to a different extent in various sub-
groups, mosaicism is something to be considered in at least 
every second such case. However, if a specific genetic im-

balance caused by an sSMC is known to be harmful, in the 
overwhelming majority of the cases there is no influence of 
the grade of somatic mosaicism detectable in peripheral 
blood or amnion cells and the observed clinical effects. This 
seems to be due to the fact that the mosaicism rate in differ-
ent human tissues is practically not predictable and very 
variable [52]. Only in exceptional cases the presence of spe-
cific sSMC with known adverse prognosis was reported 
which did not lead to clinical problems due to low somatic 
mosaicism; examples are 07-W-p10/1-1, 15-O-q13/1-1, 15-
O-q13/1-2, 15-O-q13/2-1, 15-O-q13/3-1, 15-O-q13.1/1-1, 
22-O-q11.21/4-2, 22-O-q11.21/4-3, 22-O-q11.21/5-1 [44]. 
Even though rare, this knowledge is extremely important for 
prenatal counseling. 
 Knowing that somatic mosaicism happens in ~50% of the 
cases with sSMC, array-CGH studies cannot be offered as a 
screening test to reliably detect this kind of chromosomal 
aberration. On the one hand, low level mosaic cases and on 

Table 4. Mosaicism in Cases with Neocentric sSMC 

sSMC derived from chromosome Number of cases with mosaicism  Percentage of cases with mosaicism  

1 3/5 60% 

2 3/4 75% 

3 10/11 91% 

4 1/1 100% 

5 0/1 0% 

6 1/2 50% 

7 1/1 100% 

8 7/9 77% 

9 1/3 33% 

10 1/2 50% 

11 0/2 0% 

12 2/3 75% 

13 5/14 56% 

14 1/1 100% 

15 2/19 11% 

16 1/1 100% 

17 0/1 0% 

18 1/1 100% 

19 n.a. n.a. 

20 0/1 0% 

21 n.a. n.a. 

22 n.a. n.a. 

X 0/1 0% 

Y 0/1 0% 

overall 40/86 47% 

acrocentric 8/34 24% 

non-acrocentric 32/55 58% 
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the other hand, cryptic mosaics are missed. Thus, cytogenet-
ics is still the gold-standard to detect any kind of chromoso-
mal aberration, which then, in further steps can be character-
ized by molecular (cyto-) genetic approaches.  
 Interestingly, acrocentric and non-acrocentric derived 
sSMC are differently susceptible to mosaicism; acrocentric 
derived ones are hereby the more stable ones. This holds true 
for centric and neocentric sSMC, and an explanation is there-
fore at present not available.  

CONCLUSION 

 Somatic mosaicism is a feature of the human body, 
which has to be considered much more than up to now in 
future. It is known as a fact, but not understood why man 
with age (in peripheral blood) develops something like a 
‘Turner-syndrome-mosaic’ 46,XY/45,X. Similarly, in cases 
with sSMC it is known since years, that PKS patients lose 
the i(12p) in peripheral blood or that some inv dup(15) 
sSMC are stable and cytogenetically identical ones in an-
other carrier are not. For all these facts to the best of our 
knowledge, no studies were undertaken to come closer to an 
understanding of these phenomena. Here we present, some 
kind of starting point for such studies, for the first time a 
detailed ‘mosaicism map’ for the different subtypes of 
sSMC. 
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A detailed characterization of chromosomal rearrangements 
detected in routine banding cytogenetics can nowadays be 
done easily by fluorescence in situ hybridization (FISH) 
and/or array-comparative genomic hybridization (aCGH) 
(Manolakos et al. 2010; Weimer et al. 2011). While in 
aCGH, a higher resolution may be achieved, FISH still has 
several advantages over the array-based approaches (Mano-
lakos et al. 2010). FISH allows, for example, the analysis of 
balanced rearrangements, of chromosomal aberrations pres-
ent only in low mosaic levels, and of the large heterochro-
matic regions of the human genome. The acrocentric short 
arms; the centric and the large pericentric regions of chro-
mosomes 1, 9, and 16; as well as the band Yq12 cannot be 
analyzed by aCGH.

A multitude of multicolor FISH (mFISH) probe sets 
have been developed in the last decades (Liehr 2012a). 
They were implemented for use in one experiment: 1) all 24 
human whole chromosome painting probes (multiplex 
FISH = M-FISH [Speicher et al. 1996]; spectral karyotyp-
ing = SKY [Schröck et al. 1996]) or 2) all centromeric 
probes (centromere-specific M-FISH = cenM-FISH 
[Nietzel et al. 2001]). Also, 3) various FISH banding 
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Summary

A new multicolor fluorescence in situ hybridization (mFISH) probe set is presented, and its possible applications are highlighted 
in 25 clinical cases. The so-called heterochromatin-M-FISH (HCM-FISH) probe set enables a one-step characterization of 
the large heterochromatic regions within the human genome. HCM-FISH closes a gap in the now available mFISH probe 
sets, as those do not normally cover the acrocentric short arms; the large pericentric regions of chromosomes 1, 9, and 
16; as well as the band Yq12. Still, these regions can be involved in different kinds of chromosomal rearrangements such 
as translocations, insertions, inversions, amplifications, and marker chromosome formations. Here, examples are given 
for all these kinds of chromosomal aberrations, detected as constitutional rearrangements in clinical cases. Application 
perspectives of the probe set in tumors as well as in evolutionary cytogenetic studies are given. (J Histochem Cytochem 
60:530–536, 2012)

Keywords

multicolor fluorescence in situ hybridization (mFISH), heterochromatin-M-FISH (HCM-FISH) probe set, heteromorphism, 
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approaches (Liehr et al. 2002a) were introduced as well as 
4) combinations of centromeric with locus-specific and/or 
partial chromosome painting probes (e.g., subcentromere-
specific M-FISH = subcenM-FISH [Liehr et al. 2006]). 
These probe sets are highly suited to characterize simple 
and complex chromosomal aberrations (approaches 1 and 
3) or small supernumerary marker chromosomes (sSMC) 
(Liehr et al. 2004, 2006) (approaches 2 and 4). Recently, 
even a probe set was introduced to substantiate indirectly 
epigenetic changes (parental origin determination FISH = 
POD-FISH [Weise et al. 2008]).

Here, we present a new mFISH probe set specifically 
directed against the large heterochromatic regions within 
the human genome. This so-called heterochromatin-M-
FISH (HCM-FISH) set was successfully established and 
applied already in 30 cases, where its application saved 
sample material and time. We present 25 representative 
cases studied by HCM-FISH and discuss the possible appli-
cations of this new probe set.

Materials and Methods
HCM-FISH Probe Set

The HCM-FISH probe set (Fig. 1) is based on eight glass-
needle microdissection (midi)–derived and one P1 artificial 
chromosome (PAC) probe (RP5–1174A5 = dj1174A5); the 
latter was kindly provided by Dr. M. Rocchi (Bari, Italy). 
The latter probe is specific for the nucleolus organizer 
region (NOR), which contains several tandem copies of 
ribosomal RNA genes and in humans is clustered on the 
short arms of chromosomes 13, 14, 15, 21, and 22; that is, 
the acrocentric chromosomes (Trifonov et al. 2003). Midi 
was done as previously reported (Liehr et al. 2002b). Midi 
probes for the regions 1q12, 9q12, 15p12~11.2 (i.e., a 
β-satellite–specific probe), 16q11.2, 19p12~19q12, and 
Yq12 were established for this probe set, while those probes 
for 9p12/9q13 (midi 36) (Starke et al. 2002) and for all 
acrocentric short arms (midi 54) were as previously 
reported (Mrasek et al. 2003).

The DNA of the nine probes was amplified in vitro and 
labeled by degenerated oligonucleotide primer polymerase 
chain reaction (DOP-PCR) according to standard proce-
dures (Telenius et al. 1992). The amplification procedure 
followed a published scheme (Fig. 2A in Liehr et al. 2002b). 
The used fluorochromes Spectrum Green (SG), Spectrum 
Orange (SO), Texas Red (TR), cyanine 5 (CY5), and dieth-
ylaminocoumarin (DEAC) were applied for the nine DNA 
probes as depicted in Figure 1A. Thus, each DNA probe 
obtained its unique fluorochrome combination, which could 
be transformed into pseudocolors (Fig. 1) using the soft-
ware mentioned below.

Twenty metaphase spreads were analyzed, each using a 
fluorescence microscope (Axioplan 2 MOT; Carl Zeiss, 

Oberkochen, Germany) equipped with appropriate filter 
sets to discriminate between all five fluorochromes and the 
counterstain 4’,6-diamidino-2-phenylindole (DAPI). Image 
capturing and processing were carried out using an Isis 
mFISH imaging system (MetaSystems; Altlussheim, 
Germany).

Clinical Cases
Overall, 30 clinical cases were studied already by HCM-FISH 
(Table 1). The clinical indications were infertility, repeated 
abortions, dysmorphic features and/or mental retardation, or a 
prenatal cytogenetic study due to advanced maternal age 
(Table 1). In all studied cases, apart from cases 1 and 1a to 1d, 
which were normal controls, banding cytogenetics revealed 
an aberrant karyotype. M-FISH was not informative in cases 
2, 4, 6, 7, 8, 10, 11, and 14 (results not shown). In cases 3, 5, 
12, 13, and 15, heteromorphisms were suggested after  
Giemsa stained chromsomes banding. In the additional 
redundant 11 cases (Table 1), similar observations were made. 
In case 9, HCM-FISH was applied directly, as an sSMC 
derived from an acrocentric chromosome was suggested.

Results
In the present study, it could be demonstrated that HCM-
FISH can be used to characterize within one single step 
chromosomal rearrangements with gross involvement of 
heterochromatic material. The HCM-FISH probe set was 
established first in five control cases (result shown for case 
1 in Fig. 1A and for case 1b in Fig. 1B). The probe mix 
appeared to work reliably and stably and stained the fore-
seen chromosomal regions as expected. Afterwards, it was 
applied in the five groups of patients listed below (Table 1). 
All chromosomal aberrations in cases 2 to 14 were initially 
detected by GTG banding.

1.	 Heterochromatic material attached to the tip of a 
nonacrocentric chromosomal arm: In cases 2, 4, 
4a, and 4b, the short arm of a acrocentric chro-
mosome unable to be further characterized was 
attached to the short arm of a chromosome 1 (Fig. 
1C) or the long arm of a Y chromosome (Fig. 1E).

2.	 Heterochromatic material attached to the end of an 
acrocentric chromosomal arm: In cases 5-8, 12, 13, 
and 15, the short arms of different acrocentric chro-
mosomes were enlarged. Chromosome 15p–specific 
β-satellite DNA was amplified in one chromosome 
15 of case 5 (Fig. 1F); additionally, double satel-
lites (dss) were present on the second chromosome 
15 and one chromosome 22 in case 5. Furthermore, 
chromosome 22 of case 5 with dss had a so-called 
increase in the length of the stalk of the short arm 
(pstk+) (Fig. 1F). Similar heteromorphisms were 
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the reason for the enlargements of acrocentric 
p-arms in cases 12 (including cases 12a and 12b), 
13 (including cases 13a and 13b), and 15: dss, 
pstk+, or double stalks (pstkpstk) were character-
ized (Table 1). In cases 6, 7, and 8 (including cases 

6a and 8a–8d), heterochromatic material derived 
from Yq12 was added to the short arms of a chro-
mosome 13, 14 (Fig. 1G), or 15.

3.	 Heterochromatic material inserted in an autosome: 
In cases 10 and 11, undefined additional material 

Figure 1. (A) Label scheme used for the heterochromatin multicolor fluorescence in situ hybridization (HCM-FISH) probe set. The 
pseudocolors used for the corresponding region-specific DNA probes in C through J are used to indicate the fluorochromes applied to 
generate the HCM-FISH probe set. Also, the nine labeled chromosome pairs and the Y chromosome are shown in pseudocolor depiction 
below the scheme. Eight microdissection (midi)–derived and one cosmid probe (dj1174A5) were labeled by Spectrum Green (SG), 
Spectrum Orange (SO), Texas Red (TR), cyanine 5 (CY5), and diethylaminocoumarin (DEAC) as depicted. acro-p-arms, short arms of all 
acrocentric human chromosomes; NOR, nucleolus organizer region. (B) Real color depiction of a female metaphase after HCM-FISH. All 
labeled chromosomes are highlighted by the chromosome numbers. Chromosomes are counterstained in dark blue by 4’,6-diamidino-2-
phenylindole (DAPI), CY5 and SG are depicted in greenish colors, TR and SO are in reddish ones, and DEAC is in light blue. (C-J) Typical 
FISH results after application of the HCM-FISH probe set on a metaphase of a normal control (see Table 1). (C) HCM-FISH revealed in 
one hybridization step the nature of the derivative chromosome 1 (arrowhead) in case 2 (Table 1), that is, der(1)t(1;acro)(p36.33;p11.2). 
(D) In case 3 (Table 1), a suggested 16qh+ (arrowhead) could be confirmed. (E) der(Y)t(Y;acro)(q11.2;p12) was characterized in case 
4 (Table 1). (F) In case 5 (Table 1), the short arms of both chromosomes 15 and one chromosome 22 looked abnormal. By HCM-FISH, 
the following could be defined: one chromosome 15 has an enlarged β-satellite–positive region (left chromosome 15), the second 
chromosome had double satellites (right chromosome 15), and the chromosome 22 in question had an enlarged midi-positive region 
plus double satellites (arrowhead). (G) In case 7 (Table 1), the extremely enlarged short arm of one chromosome 14 (arrowhead) derived 
from Yq12 and a final karyotype of 46,XX,der(14)t(Y;14)(q12;p13) was characterized. (H) A small supernumerary marker chromosome 
(sSMC) was present in case 9 (Table 1). It was initially suggested to be derived from an acrocentric chromosome; however, HCM-
FISH characterized the sSMC as a derivative of the short arm of chromosome 9 (arrowhead): del(9)(q11.1~12). (I) The unknown 
material inserted in 4q34.2 of case 10 (Table 1) was characterized by HCM-FISH as derived from the short arm of an acrocentric 
chromosome (arrowhead). (J) In case 11 (Table 1), short arm material derived from an acrocentric chromosome was inserted in a 
derivative chromosome 16 in p11.2 (arrowhead).
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was inserted into a chromosome 4 and 16, respec-
tively. By HCM-FISH, this material was defined 
to be derived from an acrocentric short arm (Fig. 
1I and 1J).

4.	 Enlargement of heterochromatic blocks in auto-
somes: In cases 3 and 14, the heterochromatic 
blocks of one chromosome 16 and 9, respectively, 
were enlarged. In case 3, it was an enlargement of 
16q11.2, describable as 16qh+ (Fig. 1D). In case 
14, the enlargement resulted from an additional 
band derived from DNA homologous to midi 36 
(specific for 9p12/9q13).

5.	 Potentially heterochromatic sSMC: Case 9 was 
studied by the HCM-FISH probe set, as a hetero-
chromatic; it was most likely that acrocentric chro-
mosome–derived sSMC was expected according 
to GTG banding. Surprisingly, this sSMC turned 
out to be del(9)(q11.1~12), also describable as 
der(9)(pter->q11.1~12:) (Fig. 1H).

Discussion

During the last decades, numerous mFISH approaches 
have been developed (Liehr 2012a): M-FISH/SKY is able 

to characterize the origin and/or composition of larger 
euchromatic-derivative chromosomes (Speicher et al. 
1996; Schröck et al. 1996); cenM-FISH can identify the 
chromosomal origin of sSMC (Nietzel et al. 2001); FISH 
banding and the use of locus-specific probes enable a bet-
ter breakpoint characterization than banding cytogenetics 
(Weise et al. 2002; Manvelyan et al. 2007); and POD-FISH 
is able to determine the parental origin of derivative chro-
mosomes on a single cell level (Polityko et al. 2009). Even 
though there were already probe sets specific for some of 
the large heterochromatic human chromosomal regions, 
like pericentromere of chromosome 9 (Starke et al. 2002), 
or short arms of all acrocentric chromosomes (Trifonov et 
al. 2003), no probe set was available up to now that was 
directed against all of them. The HCM-FISH probe set 
closes this gap in mFISH approaches; within one single 
step, chromosomal rearrangements with gross involvement 
of heterochromatic material can be characterized, as 
shown for cases 2 to 15.

Here, HCM-FISH was applied for the characterization of 
five different kinds of chromosomal rearrangements and 
proved to be a helpful tool in clinical cytogenetic diagnostics. 
However, the HCM-FISH probe set could also be used to 
answer questions in other fields, such as tumor cytogenetics 

Table 1. Cases Solved by HCM-FISH

Case No. Clinical Indication Final Cytogenetic Result

  1 None: normal control 46,XY
  2 Infertility 46,XX,der(1)t(1;acro)(p36.33;p11.2)
  3 Prenatally detected; advanced maternal age 46,XY,16qh+
  4 Infertility 46,X,der(Y)t(Y;acro)(q11.2;p12)
  5 Dysmorphic features 46,XY,15βsat+,15pss,22pstk+pss
  6 Infertility 46,XY,der(13)t(Y;13)(q11.2;p12)
  7 Prenatally detected; advanced maternal age 46,XX,der(14)t(Y;14)(q12;p13)
  8 Infertility 46,XY,der(15)t(Y;15)(q12;p13)
  9 Dysmorphic features, mentally retarded 47,XX,+del(9)(q11.1~12)
10 Dysmorphic features, mentally retarded 46,XX,der(4)ins(4;acro)(q34.2;p11.2p12)
11 Dysmorphic features, mentally retarded 46,XX,inv(2)(q31q37.3),ins(16;acro)(p11.2;p11.2p12)
12 Repeated abortions 46,XX,14pstkpstk,21pstk+
13 Repeated abortions 46,XX,22pstk+pss
14 Repeated abortions 46,XX,inv(9)(var5)
15 Infertility 46,XY,21pstkpstk
15 Additional Redundant Cases

1a None: normal control 46,XY
1b–1d None: normal control 46,XX
4a–4b Infertility 46,X,der(Y)t(Y;acro)(q11.2;p12)
6a Infertility 46,XX,der(13)t(Y;13)(q11.2;p12)
8a–8b Infertility 46,XY,der(15)t(Y;15)(q12;p13)
8c–8d Infertility 46,XX,der(15)t(Y;15)(q12;p13)
12a Repeated abortions 46,XY,14pstkpstk
12b Repeated abortions 46,XY,21pstk+
13a–13b Repeated abortions 46,XX,22pstk+pss
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or evolutionary studies. Examples would be interstitial het-
erochromatin in tumor-associated derivative chromosomes 
(Doneda et al. 1989) or studies on evolutionarily conserved 
heterochromatin (Mrasek et al. 2003).

If heterochromatic material is attached to the tip of a nona-
crocentric chromosomal arm, the carrier can be clinically 
normal and only detected due to infertility or clinically 
affected due to essential loss of subtelomeric material in the 
“receiving” chromosome. There are cases reported with 
attached heterochromatin derived from an acrocentric short 
arm, similar to the present cases 2 and 4 (Weise et al. 2002), 
or derived from Yq12 (de Ravel et al. 2004; Hiraki et al. 
2006). Yet, there are no other terminal additions of hetero-
chromatic material reported as inborn rearrangements. 
However, in tumor cytogenetics, terminal translocations with 
breakpoints in 16q11.2 (Tsuda et al. 1999) or the pericentric 
region of chromosome 19 (Nagel et al. 2009) are reported.

Heterochromatic material attached to the end of an acro-
centric chromosomal arm can have various sources. In gen-
eral, such derivative acrocentric chromosomes are considered 
to be heteromorphic variations without any clinical mean-
ing. They can be found in infertility patients and in those 
with clinical problems. In rare cases, the clinical phenotype 
of a patient is due to euchromatin translocated to an acrocen-
tric short arm (Trifonov et al. 2003). The cases included in 
this study had only heterochromatic variants, considered to 
have no clinical meaning. However, their influence on fertil-
ity is still a matter of discussion (Codina-Pascual et al. 2006). 
In cases 5, 12, 13, and 15, the enlargement of one or more 
acrocentric short arms was due to double satellite formation 
(dss), increase in the length of the stalk of the short arm 
(pstk+), or double stalks (pstkpstk). These are well-known 
length variations in heterochromatic segments described in 
the corresponding standard literature (Shaffer et al. 2009). In 
most of them, the NOR is involved; however, systematic 
studies aligning results from NOR silver staining 
(Goodpasture et al. 1976) and FISH studies using a NOR-
specific or an rDNA probe are still lacking. In case 5 also, 
15p-specific β-satellite DNA was amplified on one chromo-
some 15, a variant less frequently observed (Acar et al. 
1999) and not yet included in Shaffer et al. (2009). Finally, 
the short arm of an acrocentric chromosome can be enlarged 
due to an unbalanced translocation of Yq12 material (cases 
6–8). Most frequently observed are der(15)t(Y;15)(q12;p13) 
(Chen et al. 2007), while corresponding derivatives of chro-
mosomes 13 (Morris et al. 1987), 14 (Buys et al. 1979), 21 
(Ng et al. 2006), or 22 are rarely or have not been seen up to 
now.

Insertion of heterochromatic material into a chromo-
some arm of an autosome was present in cases 10 and 11 of 
this study. HCM-FISH showed in one step that this material 
was derived from an acrocentric short arm, once with and 
once without the NOR region. Similar reports are scarcely 
available in the literature (Watt et al. 1984; Reddy and 

Sulcova 1998; Guttenbach et al. 1998; Chen et al. 2004). 
However, even such an insertion in an X chromosome was 
seen once (Tamagaki et al. 2000). Also, heterochromatic 
material from the pericentric region of chromosome 9 may 
be inserted into euchromatic (own unpublished observa-
tion) of heterochromatic material of other chromosomes 
(Doneda et al. 1998). Furthermore, Yq12 (Ashton-Prolla et 
al. 1997) and 16q11.2 material (McKeever et al. 1996) were 
observed to be inserted in another chromosome. Moreover, 
heterochromatic insertions such as Yq12 have been observed 
in tumor cytogenetics (Sala et al. 2007).

Enlargement of heterochromatic blocks in autosomes, 
specifically in chromosomes 1, 9, and 16, is well known and 
described in Shaffer et al. (2009) and elsewhere (Starke 
et al. 2002). Variants such as qh+, ph+, and qh– can be eas-
ily characterized by HCM-FISH. Also, the variants of chro-
mosome 9 reported in Starke et al. (2002) can be visualized, 
similar to here in case 14.

Finally, HCM-FISH is suited to be used for the one-step 
characterization of potentially heterochromatic sSMC 
cases. In case 9, an acrocentric chromosome–derived sSMC 
was expected but turned out to be del(9)(q11.1~12). Thus, 
sSMC, being largely C banding-positive, are good candi-
dates to be tested by HCM-FISH. sSMC derived from chro-
mosomes 1, 9, 16, 19, or any acrocentric chromosome, can 
be determined or at least narrowed for their origin using this 
probe set, including such sSMC being Yq12 positive. Thus, 
over 55% of sSMC can be characterized with this simple 
probe set (Liehr 2012b).

In conclusion, we present a new mFISH probe set easily 
and effectively applicable in clinical cytogenetic routine 
diagnostics. It could be enlarged by additional probes, for 
example, an rDNA probe (Muravenko et al. 2001), midi 
probes of obviously heterochromatic sSMC of unclear ori-
gin within the human genome (Mackie Ogilvie et al. 2001), 
or regions of cytogenetically visible copy number variants 
(Manvelyan et al. 2011). The application of HCM-FISH 
will be helpful in tumor cytogenetics as well as in evolu-
tion research studies; for the latter, the addition of species-
specific heterochromatic DNA probes would also be 
recommended.
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 Small Supernumerary Marker Chromosomes 

 Small supernumerary marker chromosomes (sSMC) 
are defined as structurally abnormal chromosomes that 
cannot be identified or characterized unambiguously by 
conventional banding cytogenetics alone; they are gener-
ally equal in size or smaller than a chromosome 20 of the 
same metaphase spread. sSMC can either be present ad-
ditionally in (1) an otherwise normal karyotype, (2) a nu-
merically abnormal karyotype (like Turner- or Down-
syndrome) or (3) a structurally abnormal but balanced 
karyotype with or without ring chromosome formation. 
Overall, sSMC are too small to be considered for their 
chromosomal origin by traditional routine banding tech-
niques, and molecular cytogenetic approaches are need-
ed for their exact characterization [Liehr et al., 2004]. The 
general risk for an abnormal phenotype in prenatally as-
certained de novo cases with sSMC is given as 26–30% 
[Liehr and Weise, 2007].

  Different factors have to be considered to establish a 
potential clinical impact of a prenatally ascertained de 
novo sSMC case. The sheer size of the extra chromosome 
is less important; rather, the question if the sSMC con-
sists of hetero- or euchromatin has to be answered first, 
together with the characterization of its chromosomal 
origin. As shown first in 2006 [Liehr et al., 2006], a ge-
notype-phenotype correlation can be based on the re-

 Key Words 

 Molecular cytogenetics  �  Mosaicism  �  Small supernumerary 
marker chromosome 

 Abstract 

 Somatic mosaicism is present in slightly more than 50% of 
small supernumerary marker chromosome (sSMC) carriers. 
Interestingly, non-acrocentric derived sSMC show mosa-
icism much more frequently than acrocentric ones. sSMC can 
be present in different mosaic rates, which may go below 5% 
of the studied cells. Also cryptic mosaicism can be present 
and mosaics may be differently expressed in different tissues 
of the body. Even though in the overwhelming majority of 
the cases somatic sSMC mosaicism has no direct clinical ef-
fect, there are also cases with altered clinical outcomes due 
to mosaicism. Also clinically important is the fact that a de 
novo sSMC, even present in mosaic, may be a hint of unipa-
rental disomy (UPD). As it is under discussion to possibly re-
place standard karyotyping by methods like array-CGH, the 
impracticality of the latter to detect low-level sSMC mosaics 
and/or UPD has to be considered as well. Overall, sSMC mo-
saicism has to be studied carefully in each individual case, as 
it can be extremely informative and of importance, especial-
ly for prenatal genetic counseling. 
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gions and sizes of chromosomal imbalances induced by 
the sSMC [Liehr, 2012]. However, even if an sSMC is, ac-
cording to that, considered to be harmless, it still is im-
portant to test for a uniparental disomy (UPD) of the 
corresponding sister chromosomes [Liehr et al., 2011], as 
around 5% of de novo sSMC are correlated with a UPD 
[Liehr et al., 2004]. Besides, in  � 14% of the cases, an 
sSMC is present additionally to a numerical chromo-
somal aberration like trisomy 13, 18 or 21, monosomy X, 
or any other numerical aberration of the gonosomes. For 
these latter cases, it is common sense that the sSMC is 
more or less negligible for clinical outcome, as the effects 
of a whole chromosome gain or loss are much stronger 
than that of an sSMC.

  One of the most puzzling problems in sSMC cases is 
mosaicism, as in general, the percentage in which an 
sSMC is present can, but must not, have an influence on 
the clinical outcome [Liehr et al., 2004, 2006]. Thus, this 
review is focusing on this special question and tries to 
give an answer on the clinical impact of somatic mosa-
icism in cases with sSMC.

  Somatic Mosaicism in sSMC Cases 

 Somatic mosaicism is not only observed in the every-
day-life of cytogeneticists [Gebhart and Liehr, 1999; 
Yurov et al., 2007; Iourov et al., 2008], but also in recent 
research projects [Yurov et al., 2009; Mkrtchyan et al., 
2010]. However, of the almost 400 different human body 
tissues, normally only one tissue, i.e. blood, amnion or 
chorion cells, or fibroblasts are studied cytogenetically. 
Thus, nobody can know the real rate of somatic mosa-
icism in any studied individual. Though, few postmor-
tem studies in carriers of sSMC indicate up to now that 
frequency of sSMC-carrying cells is highly variable from 
tissue to tissue [Fickelscher et al., 2007]. This has to be 
considered for the following thoughts, especially, as mo-
saicism ranges from very low, i.e. less than 0.5% of studied 
cells with an sSMC, to very high, i.e. (practically) all cells 
of the studied tissue with sSMC [Liehr et al., 2011].

  Frequency and Clinical Impact of Somatic Mosaicism 

in sSMC Cases 

 Basic Karyotype 47,XN,+mar 
 In sSMC, carriers having karyotypes of 47,+mar a mo-

saic of 47,+mar/46 is present in 52% of the cases, excluding 
the well-defined sSMC-related syndromes mentioned in 

the following paragraph. However, there is a difference be-
tween acrocentric and non-acrocentric derived sSMC: 28% 
of acrocentric derived sSMC, compared to 82% of non-ac-
rocentric derived sSMC are mosaic [Liehr et al., 2010].

  Somatic mosaicism is reported also in the known 
sSMC-related syndromes isochromosome-5p-syndrome 
(92%), isochromosome-8p-syndrome (95%), isochromo-
some-9p-syndrome ( � 90%), isochromosome-12p-syn-
drome = Pallister-Killian-syndrome (100%), isochromo-
some-15q-syndrome (15%), isochromosome-18p-syn-
drome (4%), Emanuel-syndrome (0%), and cat-eye-
syndrome (3%) [Liehr et al., 2010; Liehr 2012].

  If a specific genetic imbalance caused by an sSMC is 
known to be harmful [Liehr et al., 2006; Liehr 2012], in the 
overwhelming majority of the cases there is no influence 
of the grade of somatic mosaicism detectable in peripheral 
blood or amnion cells and the observed clinical effects. 
This is suggested to be due to the fact that the mosaicism 
rate in different human tissues is, as aforementioned, not 
predictable and very variable [Fickelscher et al., 2007].

  However, in exceptional cases the presence of an sSMC 
with known adverse prognosis was reported, which did, 
surprisingly, not lead to clinical problems. Most likely ex-
planation for this finding is somatic mosaicism; examples 
are listed in  table 1 . Especially noteworthy is that by now 
2/23 isochromosome-5p-, 5/51 isochromosome-9p-, 1/271 
isochromosome 12p-, 4/400 isochromosome-15q-, 1/229 
isochromosome-18p, and 4/192 cat-eye-chromosome-car-
riers showed no clinical symptoms due to low-grade-mo-
saicism. Besides, there are other cases reported for sSMC 
derived from chromosomes 5, 7, 8, and 20 which should 
lead to clinical symptoms, but did not, as a large cell line 
with normal karyotype was predominant. In case of sSMC 
(7), the father had the extra chromosome in only 35% of 
his blood lymphocytes, while the phenotypically impaired 
son was carrier in 100% of his blood cells. A similar ex-
ample with good outcome is case 15-O-q13.1/1-1, in which 
a r(15)(p11.2q13.1) was present in mother and daughter in 
mosaic and did not harm any of them. Also possible, as 
among the cases listed in  table 1 , the sSMC may not be the 
reason for clinical signs and symptoms [Nelle et al., 2010]. 
Overall, even though rare, considering mosaicism as a 
possibility with clinical impact in comparable sSMC cases 
is extremely important for prenatal counseling.

  Basic Karyotype 46,X,+mar 
 Basically, a karyotype 45,X may be connected with a 

Turner syndrome [Liehr et al., 2007]. In patients with a 
karyotype 45,X,+mar, mosaics like 45,X/45,X,+mar/
46,XN are found in 87% of the cases. If the corresponding 
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sSMC is derived from the Y-chromosome, mosaic is pres-
ent in 83%; if derived from the X-chromosome, it is pres-
ent in 94% of the cases [Liehr et al., 2010]. For patients 
with dysgenetic gonads, the presence of Y-chromosome 
material detected during cytogenetic analysis indicates 
an increasing risk of gonadal tumors, especially gonado-
blastoma, estimated to be  � 30%. Gonadoblastoma is a 
benign tumor, but it can undergo transformation into in-
vasive dysgerminoma in 60% of the cases and also into 
other malignant forms of germ cell tumors [Liehr et al., 

2007]. Prenatally, in case of a 45,X/46,X,+der(X) karyo-
type, it is important to test for the ability of the derivative 
X-chromosome to be inactivated, i.e. for the presence of 
the X-inactivation center-gene [Agrelo and Wutz, 2010]. 
An sSMC derived from the X-chromosome can only be 
inactivated if the X-inactivation center-region is pre-
served on it. Presence or absence of the X-inactivation 
center in the sSMC may lead to different clinical out-
comes, especially with respect to mental development 
[Liehr et al., 2007].

Table 1. s SMC cases with clinical consequences of mosaicism: pathogenic sSMC but normal clinical phenotype 
due to mosaicism

Chromosomal 
origin

Karyotype (mosaic in [%]) Material studied Case number acc. to 
Liehr [2012]

5 47,XY,+del(5)(q11.1)[3] blood 05-O-pter/1-1
5 47,XY,+i(5)(p10)[16] blood 05-O-pter/2-1
5 47,XX,+i(5)(p10)[7]

interphase: 47,XX,+i(5)(p10)[70]
amnion
buccal mucosa

05-O-pter/2-2

7 47,XY,+r(7)(p10]q11.2)[35] blood father of 
07-W-p10/1-1

8 47,XX,+r(8)(p23.1q1?1)[27] blood 08-O-p23.1/1-1
9 47,XY,+i(9)(p10)[20] blood 09-O-pter/1-1
9 47,XX,+i(9)(p10)[100]

47,XY,+i(9)(p10)[65]
blood
buccal mucosa

09-O-pter/1-2

9 48,XXX,+i(9)(p10)[40]/47,XXX[40]/
47,XX,+i(9)(p10)[7]/46,XX[13]

blood 09-O-pter/1-3

9 47,XX,+i(9)(p10)[?] blood 09-O-pter/1-4
9 47,XX,+i(9)(p10)[72] blood 09-O-pter/1-5

12 47,XX,+i(12)(p10)[37] skin 12-Wpks-1
15 47,XX,+inv dup(15)(q13)[56] blood 15-O-q13/1-1
15 47,XY,+inv dup(15)(q13)[23]

47,XY,+inv dup(15)(q13)[27]
amnion
blood

15-O-q13/1-2

15 47,XX,+inv dup(15)(:p11.1]q12�13:
:q12�13]p11.1:)[7]/47,XX,+min(15)
(:p11.1]q11.2:)[22]/47,XX,+r(15)
(p11.1q11.2)[30]/47,XX,+r(15)
(p11.1q12)[15]/46,XX[26]

blood 15-O-q13/2-1

15 47,XX,+inv dup(15)(pter]q13::q12]pter)[6]
47,XX,+inv dup(15)(pter]q13::q12]pter)[15]
47,XX,+inv dup(15)(pter]q13::q12]pter)[25]
47,XX,+inv dup(15)(pter]q13::q12]pter)[8]

amnion
blood
skin
buccal mucosa

15-O-q13/3-1

15 47,XX,+r(15)(p11.2q13.1)[79]
maternal – there 10% of blood cells

amnion 15-O-q13.1/1-1

18 47,XY,+i(18)(p10)[35] amnion 18-Wi-158
20 47,XY,+r(20)(p12.2�12.3q11.1)[15]/

47,XY,+r(20)(p12.1q11.1q11.1p12.1)[3]/
47,XY,+min(20)(:p12.1]q11.1:
:q11.1]p12.1:)[2]/46,XY[80]

amnion 20-O-p12.2/1-1

22 47,XX,+inv dup(22)(q11.21)[9] PBL 22-Wces-3-22
22 47,XX,+inv dup(22)(q11.21)[?] PBL 22-Wces-3-22a
22 47,XN,+inv dup(22)(q11.21)[?] PBL 22-Wces-5-140 
22 47,XN,+inv dup(22)(q11.21)[?] PBL 22-Wces-5-149 
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  Thus, in such cases, even if an sSMC is present only in 
a subset of the cells, its characterization has high clinical 
impact for the individual pregnancy and/or patient.

  Basic Karyotype 48,XN,+21,+mar 
 In Down-syndrome cases, a mosaic status is known 

for only 16 of 40 reported cases; 7 of those (44%) have so-
matic mosaicism with a cell line 47,+21 without sSMC 
[Liehr et al., 2010]. Neither a correlation of clinical out-
come of cases with nor without mosaicism was done yet 
for this rare subgroup of sSMC-carriers.

  sSMC in Klinefelter- and Triple-X-Syndrome 
 There are 3 reported sSMC-cases, each for Klinefelter- 

or triple-X syndrome. Two of 3 cases, each, is mosaic and 
one not [Liehr et al., 2010]. Here the same holds true as 
for the aforementioned Down-syndrome cases.

  sSMC and UPD 
 Forty-eight cases with sSMC and UPD are reported 

and summarized in  table 2 . 80% of them are mosaic cas-
es, i.e. it is a statistically significant difference (t-test:
p = 0.001) for appearance of mosaicism in sSMC without 

Table 2. s SMC cases with mosaicism and uniparental disomy

Origin of UPD Karyotype (mosaic in [%]) Material studied Case number acc. to Liehr
[2012]

1 mat 47,XX,r(1)(::p21.1]q12)[3] amnion 01-W-p21.1/1-1
4 mat 48,XY,+21,+min(4)(:p12]q11:)[80] blood 04-U-1
6 mat 48,XXY,+mar(6)[60] blood 06-CW-3
6 pat 47,XX,+r(6)(p21.2q10)[74] blood 06-W-p21.2/1-1
7 mat 47,XY,+min(7)(p12]p11.1:)[8] blood 07-W-p12/1-1
7 mat 47,XY,+min(7)(:p11.2]q11.21:)[36] blood 07-W-p11.2/1-3
7 mat 47,XY,+min(7)(:p11.2]q11.21:)[56] blood 07-W-p11.2/1-4
7 mat 47,XN,+r(7)(p11.2q21)[4] blood 07-W-p11.2/2-1
7 mat 47,XX,+r(7)(p11.1q11.2?2)[27] blood 07-W-p11.1/2-2
9 mat 47,XX,+r(9)(p12q10)[36] blood 09-W-p12/1-1

10 mat 47,XX,+min(10)(:p12.31]q11.1:)[88] blood 10-U-2
12 mat 47,XX,+min(12)(:p11]q11:)[53] amnion 12-O-p11/1-1
12 mat 47,XX,+12/47,XX,+i(12)(p10)/46,XX amnion 12-Wpks-159
14 mat 47,XY,+del(14)(q11.1)[87] blood 14-W-q11.1/3-1
14 pat 47,XX,+inv dup(14)(q11)[88] blood 14-W-q11.1/2-1
15 mat 47,XY,+r(15)(p11.1q11.1�q13)[16] blood 15-W-q11.1�13/1-1
15 mat 47,XX,+mar(X)[50] blood 15-P-2
15 mat 47,XX,+mar(15)[25] blood 15-P-3
15 mat 47,XY,+inv dup(15)(q11)[70] blood 15-P-q11/1-2
15 mat 47,XY,+inv dup(15)(q11)[45] blood 15-P-q11/1-5
15 mat 47,XY,+del(15)(q11.1)[70] blood 15-P-q11.1/1-1
15 mat 47,XX,+inv dup(15)(q11.1)[55] blood 15-P-q11.1/2-2
15 mat 47,XN,+inv dup(15)(q11.1)[?] amnion 15-P-q11.1/2-4 
15 mat 47,XN,+inv dup(15)(q11.1)[?] amnion 15-P-q11.1/2-5
15 mat 47,XY,+inv dup(15)(q11.1)[39] amnion 15-P-q11.1/2-6
15 mat 47,XX,+inv dup(15)(q11.1)[50] amnion 15-P-q11.1/2-7
15 mat 47,XY,+inv dup(15)(pter]q11::q13]pter)[85] blood 15-P-q11�13/1-1
15 mat 47,XY,+r(15)(p11.1q11.1�q13)[16] blood 15-P-q11�13/1-2
15 mat 47,XX,+inv dup(15)(q12�13)[20] blood 15-P-q12/2-3
15 mat 47,XN,+mar[8] blood 15-P-4
15 mat 47,XY,+inv dup(22)(q11.1)[46] blood 22-U-40
15 pat 47,XY,+inv dup(15)(q11)[60] blood 15-A-q11/1-1
15 pat 47,XY,+inv dup(15)(q11.2)[32] amnion 15-A-q11.2/1-1
16 mat 47,XY,+r(16)(p11.1q11.2)[84] amnion 16-W-p11.1/3-1
16 mat 47,inv(X)(p11.4p22.3)Y,+min(16)(:p11.21]q11.1:)[72] amnion 16-O-p11.21/1-1
20 mat 47,XY,+min(20)(:p11.1]q11.1:)[42] blood 20-W-p11.1/2-1
20 pat 47,XY,+min(20)(:p11.21�11.22]q11.1:)[17] amnion 20-O-p11.21�11.22/1-1
22 mat 47,XX,+min(22)(:p11.1]q11:)[22] blood 22-O-q11/2-1

Other sSMC cases 
with UPD, without 
mosaic

03-U-8; 07-W-p11.2/1-1; 14-W-q11.1�11.2/1-1; 14-CW-2; 15-P-q11/1-4; 15-P-q11/1-13; 15-P-q11.1/1-2, 
15-A-q11/1-2; 20-W-p13/3-1; 22-Wces-5-81

U PD = Uniparental disomy; mat = maternal; pat = paternal.
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(52%) and such cases with UPD (80%). Looking closer, 
one can find that the mosaic-rate of acrocentric sSMC 
without UPD is 28% compared to 75% in sSMC with 
UPD ( table 2 ). The mosaic-rate of non-acrocentric sSMC 
does not differ significantly in both groups 82% versus 
85%.

  Overall, it may be concluded that acrocentric derived 
mosaic sSMC present a UPD much more likely than 
non-mosaic ones. For non-acrocentric derived sSMC, 
there is no such correlation with mosaicism. [Liehr et al., 
2011].

  Multiple sSMC 
 There are  � 65 cases reported with a karyotype 

48,+marx2 and  � 50 cases with multiple sSMC derived 
from different chromosomes [Liehr 2012]. In these cases, 

73% or 100% are mosaic, respectively [Liehr et al., 2011]. 
Again we have to state that there is no clinical impact 
known for mosaicism, due to low case numbers.

  sSMC Formed According to McClintock Mechanism 
 Slightly over 30 cases with sSMC presence but bal-

anced karyotype (McClintock mechanism) are reported 
[Baldwin et al., 2008]. Here either a neocentromere is 
formed or the both derivatives share the available centro-
meric alpha-satellite sequences. If mosaicism appears, i.e. 
loss of the sSMC, relevant genetic material is lost and this 
normally leads to clinical problems. If no or only very low 
grade mosaicism is present, the carrier of such a karyo-
type can be completely normal; 5 such cases are summa-
rized in  table 3 .

Table 3. C ases with sSMC, formed by the McClintock mechanism, with low level mosaicism and normal out-
come

Chromosomal 
origin

Karyotype (mosaic in [%]) Material 
studied

Case number acc. to 
Liehr [2012]

1 neo 47,XY,del(1)(p32p36.1),+r(1)(p32p36.1)[87]/
47,XY,del(1)(p32p36.1),+r(1)(p32]p36.1::p23]p36.1)[10]/
46,XY,del(1)(p32p36.1)[3]

blood McCl-01-N-p32/1-1

6 47,XX,del(6)(p11.2�p11.1q12),+r(6)(p11.2�p11.1q12)[80] blood McCl-06-O-
p11.2�p11.1/1-1

8 47,XY,del(8)(p11.1q12.1),+r(8)(p11.1q12.1)[90] blood McCl-08-O-p11.1/2-1
13 neo 47,XX,del(13)(q12.3q22),+r(13)(q12.3q22)[97] blood McCl-13-N-p12.3/1-1
17 47,XX,del(17)(p11.2q10)+min(17)(:p11.2]q10:)[89] blood McCl-17-O-p11.2/2-1
22 47,XX,del(22)(p11.1q11.2)+mar[80]/ blood McCl-22-O-q11.1/1-1

n eo = Neocentromere.

Table 4. N eocentric sSMC cases with clinical consequences of mosaicism: pathogenic sSMC but normal clinical 
phenotype due to mosaicism

Chromosomal origin Karyotype (mosaic in [%]) Material studied Case number acc. to 
Liehr [2012]

1 47,XY,+r(1)(q43q44)[50] amnion 01-N-q43/1-1
2 47,XN,+mar(2)[12] amnion 02-N-1
3 47,XY,+inv dup(3)(qter]q27.1:

:q27.1]qter)[30]
47,XY,+inv dup(3)(qter]q27.1:
:q27.1]qter)[6]

blood

skin (pigmented)

03-N-qt27.1/1-1

8 47,XY,+inv dup(8)(pter]p23.2�23.1:
:p23.2�23.1]pter)[47]
47,XY,+inv dup(8)(pter]p23.2�23.1:
:p23.2�23.1]pter)[21]

amnion

blood

08-N-pt23.2�23.1/1-1

15 neo 47,XX,+mar(15)(:q11.2]q13.1:
:q11.2]q13.1::)[76]

blood 15-N-q11.2/1-1
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  Neocentric sSMC 
 In at least 50% of the known  � 100 neocentric sSMC 

cases, somatic mosaicism is present. Strikingly, as in cen-
tric sSMC, mosaicism is more frequent in non-acrocentric 
derived compared to acrocentric derived ones (58% vs. 
24%) [Liehr et al., 2010]. In  table 4 , the 5 known neocentric 
sSMC cases present in mosaic and normal clinical out-
come are collected (i.e. in  � 8% of the mosaic neocentric 
sSMC carriers, a normal clinical outcome is reported).

  sSMC Carriers with Cryptic Mosaicism 
 The real grade and complexity of mosaicism may be 

even higher in  � 5% of the sSMC cases, considering that 
recently cryptic mosaicism was repeatedly detected, which 
means sSMC cases can have more complex rearranged 
sSMC in mosaic than expected after cytogenetic analysis. 
Acrocentric derived sSMC are by far more stable than non-
acrocentric derived ones (2 vs. 9%) [Liehr et al., 2010]. 
With this knowledge, clinical consequences are to be ex-
pected because cryptic mosaics may lead e.g. to partial tet-
ra- instead of trisomies. As it is known that trisomy 18p is 
tolerated hardly without any clinical signs, tetrasomy 18p, 
i.e. isochromosome-18p-syndrome, is associated with se-
vere mental and physical problems. However, the finding 
of cryptic mosaics maybe to new, and thus, no correlation 
with this fact is possible in sSMC by now.

  Summary and Conclusion 

 Somatic mosaicism is present in  � 50% of the cases 
with sSMC. Acrocentric and non-acrocentric derived 
sSMC are differently susceptible to mosaicism. Acrocen-
tric derived are the more stable ones, and surprisingly, 
this holds true for centric and neocentric sSMC. Also, 
there is an enhanced susceptibility for UPD formation in 
mosaic acrocentric- than in non-acrocentric-derived 
sSMC.

  It has to be stressed that the only reliable approach to 
detect sSMC present in (low-level) mosaic is banding cy-
togenetics. Array-CGH studies cannot be offered as a 
screening test to reliably detect this kind of chromosom-
al aberration. Thus, especially when considering somatic 
mosaicism, cytogenetics is still the gold-standard to de-
tect any kind of chromosomal aberration, which after-
wards may be characterized in detail by molecular (cyto) 
genetic approaches.
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Abstract

Introduction: Small supernumerary marker chromosomes are still a problem in cytogenetic diagnostic and genetic
counseling. This holds especially true for the rare cases with multiple small supernumerary marker chromosomes.
Most such cases are reported to be clinically severely affected due to the chromosomal imbalances induced by the
presence of small supernumerary marker chromosomes. Here we report the first case of a patient having four
different small supernumerary marker chromosomes which, apart from slight developmental retardation in youth
and non-malignant hyperpigmentation, presented no other clinical signs.

Case presentation: Our patient was a 30-year-old Caucasian man, delivered by caesarean section because of
macrosomy. At birth he presented with bilateral cryptorchidism but no other birth defects. At age of around two
years he showed psychomotor delay and a bilateral convergent strabismus. Later he had slight learning difficulties,
with normal social behavior and now lives an independent life as an adult. Apart from hypogenitalism, he has
multiple hyperpigmented nevi all over his body, short feet with pes cavus and claw toes. At age of 30 years,
cytogenetic and molecular cytogenetic analysis revealed a karyotype of 50,XY,+min(6)(:p11.1-> q11.1:),+min(8)(:
p11.1->q11.1:),+min(11)(:p11.11->q11:),+min(12)(:p11.2~12->q10:), leading overall to a small partial trisomy in
12p11.1~12.1.

Conclusions: Including this case, four single case reports are available in the literature with a karyotype 50,XN,
+4mar. For prenatally detected multiple small supernumerary marker chromosomes in particular we learn from this
case that such a cytogenetic condition may be correlated with a positive clinical outcome.

Introduction
Multiple small supernumerary marker chromosomes
(sSMC) with diverse sSMC derived from different chro-
mosomal origin are rarely reported. According to Liehr
[1], up to now 46 such cases were reported: 33 cases
with two different sSMC, four cases each with three or
four different sSMC, two each with six and seven sSMC,
and one case with five sSMC. Overall, only seven of the
46 cases (= 15%) were reported as without clinical signs

(according to Liehr [1] cases 2-14, 2-17, 2-23, 2-26,
2-29, 3-3 and 7-1).
Patients with multiple sSMC constitute a sub-group of

patients with sSMC [2,3]. Little is known about the for-
mation of sSMC in general [1-3] or about multiple
sSMC specifically [4]. As reported previously, chromo-
somes 6, 3, 5, X, 1, 7, and 12 are over-represented in
multiple sSMC compared to their contribution to single
sSMC [4].
Here we report the first case with four sSMC derived

from chromosomes 6, 8, 11 and 12, with almost no
clinical signs.* Correspondence: i8lith@mti.uni-jena.de

5Jena University Hospital, Institute of Human Genetics and Anthropology,
Jena, Germany
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Case presentation
Our patient was a 30-year-old Spanish Caucasian man;
the third child from healthy and non-consanguineous
parents. The first child was a healthy boy and the sec-
ond child was also a boy who died after two days due to
hyaline membrane disease and prematurity. Our patient
was delivered by caesarean section after 39 gestational
weeks because of macrosomy, with a weight of 4250 g
and an Apgar score of three, thus, intensive reanimation
was required. Within five hours of life he suffered
apnea. He was also hypoglycemic and hypocalcemic, but
responded well to treatment without suffering a recur-
rence. Clinical examination showed bilateral cryptorch-
idism. During her pregnancy our patient’s mother was
treated with diazepam towards the end of the
pregnancy.
When our patient was 19 months old, his weight and

length were two standard deviations below normal. Dur-
ing further development, he showed psychomotor delay
and a bilateral convergent strabismus; also he started
walking when he was 22 months old. At the age of 10
years, his testes were surgically descended. And at the
age of 13 years the strabismus was corrected. At school
he had slight learning difficulties, with normal social
behavior. He later left studying to become a painter.
When he was 22 years old, he had no facial dys-

morphism, he weighed 89 kg, his height was 165 cm
and he had a corporal index mass of 32.7. He had hypo-
genitalism, with a short thick penis (6 cm), and testes of
8 and 10 cc. He has multiple hyperpigmented nevi all
over his body, showing no sign of malignancy after
biopsy (Figure 1A,C). He also had a left vesicoureteral
reflux grade III, with normal renal function. His cardiac,
audition and fundus of the eye examinations were nor-
mal, as was his blood biochemistry. His feet are short
with a pes cavus and claw toes (Figure 1B,C). At this
time, he was referred to a Genetic Laboratory and one
sSMC was found in his karyotype, which was considered
to be de novo because his parents had normal karyo-
types. Now, at the age of 30 years a new blood sample
for cytogenetic analysis was requested. Surprisingly, the
high resolution G-band karyotype attained from this
sample showed the presence of a relatively big SMC,
together with the presence of three additional tiny
SMCs in most cells. This cytogenetic analysis revealed a
karyotype of 50,XY,+mar1,+mar2,+mar3,+mar4.
To further characterize the sSMC centromere-specific

multicolor fluorescence in situ hybridization (cenM-
FISH [5]) was carried out. From this the chromosomal
origin of the sSMC was determined as 6, 8, 11 and 12
(Figure 2A). By sub-centromere specific M-FISH (sub-
cenM-FISH [6,7]) (Figure 2B-E) it was shown that the
sSMC derived from chromosomes 6, 8 and 11 do not

Figure 1 View of the patient at age of 30 years. (A) Multiple
hyperpigmented nevi at the trunk. (B,C) Multiple hyperpigmented
nevi at the foot which was too short, showed a pes cavus and claw
toes.
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contain any detectable euchromatic material. Only for
the derivative of chromosome 12 centromere-near mate-
rial in 12p12.1 could be detected. The final karyotype
was 50,XY,+min(6)(:p11.1->q11.1:),+min(8)(:p11.1-
>q11.1:),+min(11)(:p11.11->q11:),+min(12)(:p11.2~12-
>q10:).

Discussion
Here we report the fourth unusual case with four differ-
ent sSMC and the 34th case with multiple sSMC. It is
the eighth case with no or only minor clinical signs due
to the sSMC presence. The only detectable sSMC-
related chromosomal imbalance is a small partial tris-
omy 12p11.2~12.1. According to Liehr [8] there are sev-
eral cases with a partial trisomy 12p12 due to an sSMC
which were all clinically normal. Thus, this region seems
to be a potentially transmittable unbalanced chromoso-
mal abnormality (UBCA) without causing clinical pro-
blems (see case 12-O-p11.1/1-1 [8]). Similar UBCA were
recently reported for a multitude of chromosomal
regions [9] and especially for the centromere near
regions [3]. Thus, it is not clear if the sSMC have a
positive correlation with the observed clinical symptoms.
Moreover, it is interesting that the multiple sSMC

derive in the present case from chromosomes 6, 8, 11
and 12. Chromosomes 6 and 12 are over-represented in
multiple sSMC cases reported to date compared to their
contribution to single sSMC [4]. This might point
towards a specific way of formation of multiple sSMC
during meiosis [10].

Conclusions
The present case confirms that multiple sSMC may be
correlated with an almost normal clinical outcome. This

is especially important for the correct genetic counseling
of similar pre-natal cases. Furthermore, a small partial
trisomy
12p11.2~12.1 seems to correlate largely to no clinical

effects. Finally, involvement of chromosome 6 in sSMC
formation seems to be correlated with the tendency of
multiple sSMC formation.
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 Small supernumerary marker chromosomes (sSMCs) 
are reported in 0.044% of newborn infants and in 0.125% 
of subfertile individuals [Liehr and Weise, 2007]. sSMCs 
are structurally abnormal chromosomes that cannot be 
identified or characterized unambiguously by conven-
tional cytogenetics alone, and they are generally equal in 
size or smaller than chromosome 20 of the same meta-
phase spread [Liehr et al., 2004]. To date, only one report 
is available for a triple-X syndrome patient with an addi-
tional sSMC [Lee-Jones et al., 2004], and only 3 cases have 
been reported so far with mosaic tetrasomy 9p that pres-
ent no clinical symptoms [Sait and Wetzler, 2003; McAu-
liffe et al., 2005; Baronchelli et al., 2011].

  In the present study, we report 2 patients with tetra-
somy 9p mosaicism and an apparently normal pheno-
type. The first individual was cytogenetically studied be-
cause of a de novo inversion in a chromosome 7, observed 
in a previous pregnancy. The second proband was re-
ferred for cytogenetic studies as part of in vitro fertiliza-
tion (IVF) pre-testing due to her husband’s azoospermia. 
The results of the molecular, clinical, and cytogenetic 
findings are presented and compared to reports previ-
ously published.

 Key Words 

 Mosaicism  �  Normal phenotype  �  Tetrasomy 9p 

 Abstract 

 Tetrasomy 9p is a rare chromosomal syndrome and about 
30% of known cases exhibit mosaicism. Approximately 50 of 
the reported cases with tetrasomy 9p mosaicism show a 
characteristic facial appearance, growth failure, and devel-
opmental delay. However, 3 patients with mosaicism for iso-
chromosome 9p and a normal phenotype have also been 
reported. We report 2 additional cases of clinically normal 
young females with tetrasomy 9p mosaicism, one of whom 
also exhibited X chromosome aneuploidy mosaicism lead-
ing to an overall of 6 different cell lines. STR analysis per-
formed on this complex mosaic case indicated that the extra 
isochromosome was of maternal origin while the X chromo-
some aneuploidy was of paternal origin, indicating a postzy-
gotic event.  Copyright © 2012 S. Karger AG, Basel 
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  Case Reports 

 Case 1 
 A 20-year-old female was studied cytogenetically due to a pre-

vious pregnancy with a de novo pericentric inversion in a chro-
mosome 7. The patient presented no dysmorphic features and/or 
mental abnormalities, and there was no family history of miscar-
riages and/or genetic abnormalities. Peripheral blood and buccal 
mucosa were available for cytogenetic studies.

  Case 2 
 A 28-year-old female, the second child of healthy non-consan-

guineous parents, was studied cytogenetically before starting IVF 
treatment due to her husband’s azoospermia. The family history 
was unremarkable. The patient had a height of 169 cm, head cir-
cumference of 55 cm, weight 63 kg, had normally developed gen-
italia, normal menstrual cycle, and an average mental condition. 
Endocrinological studies revealed no abnormal values (PRL 23.3 
ng/ml, FSH 9.7 mIU/ml, LH 3.3 mIU/ml, E 2  74.7 pg/ml, PRG 0.41 
ng/ml, 17-OH PRG 0.53 ng/ml, and DHEA 946.4 ng/ml).

  Methods and Results 

 Metaphase chromosome preparations were obtained 
from PHA-stimulated lymphocyte cultures according to 
standard procedures [Verma and Babu, 1998].

  In case 1, the cytogenetic analysis of stimulated blood 
cells revealed a non-mosaic karyotype of 47,XX,+mar. 
Multiplex-fluorescence in situ hybridization (M-FISH) 
[Speicher et al., 1996] showed that the sSMC was a de-
rivative of chromosome 9. Application of a centromeric 
probe for chromosome 9 (cep 9) in combination with a 
subtelomeric probe for the short arm of chromosome 9 
(9pter) identified the sSMC as an i(9)(p10) ( fig. 1 a). How-
ever, in buccal mucosa, interphase-FISH, using a centro-
meric probe for chromosome 9, confirmed the presence 
of the sSMC only in 65% of the examined cells. This find-
ing in association with the normal clinical phenotype of 
the patient indicates that it is possible that most of the tis-
sues of the patient present a mosaicism for isochromo-
some 9p rather than a full tetrasomy 9p. According to 
ISCN [2009], the karyotype was mos 47,XX,+i(9)(p10)/
46,XX. Follow-up cytogenetic studies of the patient’s par-
ents were not possible.

  In case 2, a routine cytogenetic analysis on peripheral 
blood revealed a mosaic karyotype mos 48,XXX,+mar
[14]/47,XX,+mar[14]/49,XXXX,+mar[4]/47,XXX[2]/46,X,
+mar[2]/46,XX[4]. Parental chromosome analysis re-
vealed normal karyotypes. Application of an alpha-satel-
lite-specific probe for chromosome 9 (cep 9) together 
with a microdissection-derived probe (midi36) for the 
pericentric region of chromosome 9 (9p12/9q13–21.1), 
and a whole chromosome painting probe identified the 
sSMC as an i(9)(p10) ( fig. 1 b). Accordingly, the karyotype 
was designated as mos 48,XXX,+i(9)(p10)[14]/47,XX,+i(9)
(p10)[14]/49,XXXX,+i(9)(p10)[4]/47,XXX[2]/46,X,+i(9)
(p10)[2]/46,XX[4]dn.

  DNA was extracted from blood samples using the Nu-
cleoSpin blood extraction kit (Macherey-Nagel, Düren, 
Germany). Uniparental disomy (UPD) of the normal 
chromosomes 9 was excluded by means of parent-to-pa-
tient segregation analysis using a panel of 8 short tandem 
repeat (STR) markers located along the length of chromo-
some 9 (D9S103, D9S117, D9S199, D9S194, D9S195, 
D9S109, D9S193, D9S200). A set of 4 STR markers was 
also used for the determination of the origin of the X 
chromosome aneuploidy (DXS990, DXS987, DXS8091, 
DXS1047). Quantitative fluorescence (QF) PCR was per-
formed to amplify the repeat sequences at the above poly-
morphic loci, and the primer sequences were probed with 
fluorescent labels as described elsewhere [Mann et al., 

a

b

  Fig. 1.   a  Partial karyogram of case 1 showing both normal chro-
mosomes 9 and the isochromosome 9p in inverted DAPI-banding 
and after FISH. An alpha-satellite-specific probe for chromosome 
9 (cep 9) and a subtelomeric probe for 9pter (subtel 9pter) were 
applied.  b  Both normal chromosomes 9 and the isochromosome 
9p found in case 2 after FISH using an alpha-satellite-specific 
probe for chromosome 9 (cep 9) together with a microdissection-
derived probe (midi36) for the pericentric region of chromosome 
9 (9p12/9q13-21.1) and a whole chromosome painting (wcp) 
probe.   
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2001]. The fluorescent QF-PCR products were analyzed 
by capillary electrophoresis on an automated DNA se-
quencer (ABI 3100, Applied Biosystems, Carlsbad, Calif., 
USA). STR analysis indicated that the extra isochromo-
some was of maternal origin, while the X chromosome 
aneuploidy observed in case 2 was of paternal origin (all 
extra copies of chromosome X).

  STR analysis was not performed in case 1 as no paren-
tal DNA material was available.

  Discussion 

 Tetrasomy 9p is a rare syndrome, and about 30% of 
known cases exhibit chromosome mosaicism [Stumm et 
al., 1999]. Reports in the literature of cases with tetraso-
my 9p, about 50 including mosaic and non-mosaic cases 
[Liehr, 2011], showed characteristic facial appearance 
with hypertelorism (72%), broad nasal root or bulbus/
beaked nose (69%), cleft lip or palate (78%), ear anomalies 
(88%), micrognathia (59%), developmental delay (94%), 
central nervous system anomaly (89%), limb defects 
(88%), postnatal growth failure (71%), congenital heart 
disease (62%), small gestational age (57%), renal anoma-
lies (57%), wide sutures/large fontanelle (56%), and short 
neck/excess nuchal skin (53%) [Dhandha et al., 2002].

  There are 3 patients depicted in the literature with mo-
saicism for isochromosome 9p and a normal phenotype 

[Sait and Wetzler, 2003; McAuliffe et al., 2005; Baron-
chelli et al., 2011] ( table 1 ). Sait and Wetzler [2003] de-
scribed a healthy 41-year-old male with mosaicism of iso-
chromosome 9p who was referred for cytogenetic analy-
sis because of skin lesions; the only abnormality found 
was hypereosinophilia in the bone marrow and periph-
eral blood film. McAuliffe et al. [2005] reported a 37-year-
old male patient with isochromosome 9p mosaicism with 
oligospermia who had fathered 2 normal children, and 
Baronchelli et al. [2011] found an i(9p) in 72% of periph-
eral blood cells studied cytogenetically in an adult female 
with premature ovarian failure.

  In the 2 additional cases reported here, the chromo-
somal imbalance of chromosome 9 was not associated 
with any prominent phenotypic abnormality in the ap-
parently healthy 20- and 28-year-old females. It has been 
proposed that the degree of phenotypic involvement can 
be associated with the degree of mosaicism, the size of the 
isochromosome involved, and the extent of tissue in-
volvement [Grass et al., 1993].

  Although a correlation between the level of mosaicism 
and phenotypic abnormalities has been described, there 
was no such evidence in our 2 cases. Interestingly, similar 
findings have been reported for other sSMC cases usu-
ally known to have an adverse prognosis but instead pre-
sented a mild phenotype, such as additional isochromo-
some 18p [Kim et al., 2009], inv dup(15)(q13) [Bonati et 
al., 2005; Loitzsch and Bartsch, 2006], inv dup(22)(q11.21) 

Table 1.  Cytogenetic findings and clinical data in 4 mosaic cases with a supernumerary i(9p)

McAuliffe
et al., 2005

Sait and Wetzler, 2003 Baronchelli
et al., 2011

Case 1 Case 2

Age, years 37 41 adult 20 28
Sex male male female female female
Phenotype normal normal/skin lesions/hypereosinophilia normal normal normal
Reason for 
investigation

oligospermia hypereosinophilia in bone marrow
and peripheral blood film/skin lesions

premature ovarian 
failure

previous pregnancy inv(7) IVF

Karyotype
GTG-banding

47,XY,+i(9)(p10)
[4]/46,XY[16]

47,XY,+i(9)(p10)[?100%] 47,XX,+i(9)(p10)
[72]/46,XX[28]

47,XX,+i(9)(p10)[100%];
in buccal mucosa marker
only in 65% of cells

mos 48,XXX,+i(9)(p10)[14]/
47,XX,+i(9)(p10)[14]/
49,XXXX,+i(9)(p10)[4]/
47,XXX[2]/46,X,+i(9)(p10)[2]/
46,XX[4]dn

Origin n.a. n.a. n.a. n.a. de novo
FISH method cep 9; subtel 9p n.a. n.a. M-FISH; cep 9; subtel 9p cep 9; subtel9p
Identified sSMC i(9)(p10) i(9)(p10) i(9)(p10) i(9)(p10) i(9p) maternal
Studied material PBL, skin PBL PBL PBL, buccal mucosa PBL

P BL = Peripheral blood lymphocytes.
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leading generally to cat eye syndrome [Lin et al., 2006], or 
even isochromosome 12p leading to Pallister-Killian syn-
drome [Genevieve et al., 2003]. In our case 1, no mosa-
icism was evident after studying blood lymphocytes; it 
became obvious only after interphase-FISH of the buccal 
mucosa. Still, only a few tissues were studied in both of 
our cases.

  The supernumerary isochromosome 9p in case 2 was 
a de novo finding as in all of the so far described cases 
[Dutly et al., 1998; Eggerman et al., 1998; Wyandt et al., 
2000] and of maternal origin. It seems that errors in ma-
ternal meiosis may be responsible for the origin of the 
isochromosome and that non-disjunction during meiosis 
II could be followed by rearrangements leading to dupli-
cation of the short arm and loss of the long arm in the 
majority of cases [Dutly et al., 1998].

  For sSMCs in general, the predominant mechanism of 
origin has been shown to be ring chromosome formation 
by centromere misdivision, the so-called McClintock 
mechanism [Baldwin et al., 2008].

  Trisomy X occurs from a non-disjunction event in 
which the X chromosomes fail to properly separate dur-
ing cell division, either during gametogenesis or after 
conception [May et al., 1990]. Studies made to determine 
the parental origin of the additional X chromosome dem-
onstrated that in 58–63% of cases the extra X chromo-
some derived from maternal meiosis I errors, in 16–17% 
from maternal meiosis II errors, and in 18–20% from 
post-zygotic non-disjunction [Hall et al., 2006; Hassold 
et al., 2007]. One study [Wallerstein et al., 2004] with mo-

saic trisomy X (such as 45,X/47,XXX) suggested that cas-
es of mosaicism may result from a post-zygotic non-dis-
junction event as could be the cause in our case 2. This 
case presented with a normal stature, while women with 
a mosaic karyotype of 45,X/47,XXX generally develop a 
short stature [Syber and McCauley, 2004]. The severity of 
the short stature has been correlated with the distribution 
of cell lines in 47,XXX/45,X/46,XX mosaicism [Partsch et 
al., 1994].

  Mosaicism for tetrasomy 9p is a challenging issue in 
terms of prenatal diagnosis and genetic counseling as the 
abnormality may not be detectable in the amniotic fluid 
and fetal ultrasound assessment can be normal through-
out pregnancy. In one reported case, amniocentesis due 
to advanced maternal age showed a normal fetal karyo-
type. However, further cytogenetic analysis due to post-
natal developmental delay revealed mosaic tetrasomy 9p 
in blood and skin cells [Eggermann et al., 1998].

  Our 2 cases of healthy females can be regarded as rep-
resenting the one end of the spectrum of karyotype-phe-
notype correlation in chromosomal aneuploidies [Avra-
mopoulos et al., 1997]. In most such cases, however, tis-
sue-specific mosaicism has not been fully investigated.
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3. Discussion 

As mentioned in Introduction part: Detection of an sSMC is nearly always unexpected by the 

clinician and more or less an accidental result in cytogenetics; the origin of an sSMC is almost 

impossible to establish by routine cytogenetics alone, whereas FISH methods are highly 

suited for this (Starke et al. 2003a). The majority of sSMC comprise exclusively of material 

derived from one chromosome. Of those, only a very small subset does not consist of 

consecutive chromosomal material, but has complex intrachromosomal rearrangements (Liehr 

et al. 2004a). Approximately 30% of the marker chromosome cases are familial and they 

impose a low risk of abnormality (Crolla et al. 1998, Hastings et al. 1999), whereas ~30% de 

novo cases present statistically an increased risk of inborn defects due to sSMC (Warburton 

1984, Liehr 2014a). In prenatal clinical cytogenetics, sSMC are still a problem: the question 

is, has it been correlated with clinical syndromes and is it harmful? Thus, in this study I 

worked on  

1) better sSMC characterization approaches,  

2) characterization of chromosomal breakpoints involved in sSMC formation,  

3) on mosaicism in sSMC, and overall, 

4) on a refinement of the genotype-phenotype correlation in sSMC. 

 

3.1. Development of probe sets for detection of euchromatic presence in sSMC 

To obtain additional information regarding genotype-phenotype correlations, sSMC need to 

characterized as precisely as possible. Several FISH-based techniques have been developed 

during the last decades to achieve this end (Liehr 2014b). Specific probe sets were suggested 

to detect the presence of euchromatic on an sSMC after identification of its chromosomal 

origin (e.g. by cenM-FISH (Nietzel et al. 2001)). Strikingly euchromatin can be present on an 

sSMC and must not cause any harm in the carrier; it depends which exact genetic imbalance 

was induced. As above mentioned, a detailed sSMC characterization is especially necessary in 

prenatal cases (Liehr 2014a).  

In (article 1) we reviewed the effectiveness of multicolor FISH (mFISH) methods in current 

clinical diagnostics. mFISH is defined as the simultaneous use of at least three different 

ligands or fluorochromes for the specific labeling of DNA – excluding the counterstain (Liehr 

et al. 2004c). Due to this definition, the first successful mFISH experiments were performed 

in 1989 (Nederlof et al. 1989). aCGH is an efficient and sensitive technique for detecting 

genome-wide copy number alterations at high resolution (Shaffer et al. 2007), and can narrow 

down chromosomal breakpoints to some 10 kb or less (Weise et al. 2008). Also aCGH now 
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provides accurate characterization of sSMCs in terms of chromosomal origin, gene content, 

and other concomitant imbalances elsewhere in the genome (Reddy et al. 2013). Moreover 

sSMCs have to be differentiated from insertions or unbalanced translocations, and individual 

combinations of locus-specific (BAC) probes are used to prove or contradict a gain or loss 

suggested after aCGH (Liehr et al. 2006a, Kumar et al. 2010). All available probe sets like 

whole chromosome painting mFISH probe sets (Liehr and Claussen 2002a,b, Liehr et al. 

2004c), cenM-FISH (Nietzel et al. 2001), subcenM-FISH (Liehr et al. 2006c) or FISH-

banding (Weise et al. 2002, Starke et al. 2003a) and use of locus specific probes enabled a 

better sSMC characterization than banding cytogenetics (Weise et al. 2002, Manvelyan et al. 

2007). Also sSMCs have been successfully characterized by glass needle-based chromosome 

microdissection and reverse chromosome painting (Starke et al. 2001) or use of the sSMC-

derived DNA in aCGH (article 6).   

For the present work combinations of these approaches were very successfully applied for the 

characterization of a complex sSMC derived from chromosomes 14 and 8, as der(14)t(8; 

14)(p23.2;q22.1)dn in (article 2). And also they were applied for our comprehensive study 

(article 3) in 412 reported complex sSMC. Also major parts of the 5,200 sSMC cases 

collected in our sSMC database (Liehr 2014a) were characterized by the standard approaches 

mentioned in the previous paragraph.  

Still aCGH and mentioned mFISH-approaches and probes-sets were not suited for the 

comprehensive characterization of sSMC in each case as each technique has its limitations. 

M-FISH include the inability to detect most intra-chromosomal abnormalities such as 

inversions and inter-chromosomal anomalies especially if they are 3 Mb or less (Fan 2002). 

And although aCGH is a more sensitive technique, which can significantly, narrow down 

sSMC breakpoints, available ‘chips’ often do not completely cover the pericentromeric 

regions and furthermore cannot detect low-level and/or cryptic mosaic sSMCs (Ballif et al. 

2006, Ballif et al. 2007, Baldwin et al. 2008, Li and Andersson 2009, Sheth et al. 2011, Vetro 

et al. 2012, Reddy et al. 2013). Thus, part of the present work was to establish the pericentric-

ladder-FISH (PCL-FISH) probe set (article 4), which is especially suited to narrow down 

chromosomal breakpoints in derivative chromosomes of known origin, including sSMC. This 

probe set has been used in dual-color/multicolor-FISH approaches, and it is a specific tool for 

the pericentromeric regions, which enables sSMC breakpoint characterization with a 

resolution between 1 and ~10 Mb. Pericentromeric regions of human chromosomes are 

transitional territories between centromeric heterochromatin and euchromatic regions. They 

represent complex mosaic structures, including coding sequences interspersed with non-
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coding sequences (She et al. 2004). Therefore, sequencing of these regions is technically 

difficult, and a complementary approach is necessary to clarify their role in human disease. In 

particular, the PCL-FISH probe set is a bar-code FISH assay that constitutes a 10 Mb raster 

along pericentromeric chromosomal regions, allowing the determination of mosaic and non-

mosaic sSMC breakpoints within genomic regions of 1–10 Mb in size. In addition, this 

approach has been particularly useful in characterizing cryptic mosaic sSMCs (Liehr et al. 

2010/article 5), and for easily defining all involved breakpoints.  

To further characterize sSMC with respect to their clinical impact we established another 

pericentromeric BAC-probe set (unpublished data / article 6). This yet unnamed probe set 

consists of 10 BACs euchromatic chromosome-arm with a distance of about 1 Mb between 

each probe. It is directed towards distinguishing between sSMC leading to clinical problems 

and such which are non-deleterious. This probe set is based on the assumption that 

centromere-near imbalances only then lead to clinical problems if the concerned region 

contain dosage sensitive genes (article 7). An obvious example; the pericentric region of 

chromosome 1p, is known that the region free of dosage sensitive genes includes the stretches 

between 115.8 Mb down to the centromere starting at 121.1 Mb (NCBI 36.3/hg18); for the 

long arm of chromosome 1 such a region was not defined yet. Also it was shown that sSMC-

induced trisomy including the euchromatic region starting at 115.3 Mb (NCBI36/hg18) of 

chromosome 1 lead to clinical problems. Similar probe sets are available now for the 

pericentric regions of all human chromosomes (Castronovo et al. 2013), and a combination of 

BACs used in the present paper of Castronovo together with our probe set may be the best 

way to characterize sSMC in a clinically relevant way now and in future (article 6). 

Finally, one more probe set was established to close another gap in the available mFISH 

probe sets. The latter do normally not cover the heterochromatic regions of the human 

genome, i.e. the acrocentric short arms; the large pericentric regions of chromosomes 1, 9, 

and 16; as well as the band Yq12. Here in (article 8), we developed the so-called 

heterochromatin-M-FISH (HCM-FISH) probe set, which enables a one-step characterization 

of the large heterochromatic regions within the human genome. It was applied for the 

characterization of five different kinds of chromosomal rearrangements including sSMC 

(Table 1, article 8), and proved to be a helpful tool in clinical cytogenetic diagnostics. 

However, the HCM-FISH probe set could also be used to answer questions in other fields, 

such as tumor cytogenetics or evolutionary studies. Examples would be interstitial 

heterochromatin in tumor-associated derivative chromosomes (Doneda et al. 1989) or studies 

on evolutionarily conserved heterochromatin (Mrasek et al. 2003). 
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Summary: The present work provided 3 FISH-probe sets for more comprehensive sSMC-

characterization.  

 

3.2. sSMC and localization of chromosomal breakpoints 

A yet only poorly understood point in sSMC is how and why they form. One possibility to 

approach this is to study their breakpoints as detailed as possible (Liehr 2014b). Here aCGH 

(articles 2, 6, 7 and 50 unpublished cases) and FISH (articles 1-11) were used to do this.  

PCL-FISH (article 4) was applied successfully to characterize sSMC breakpoints on single 

cell level in mosaic and non-mosaic sSMCs. In some cases the same breakpoints were 

determined in sSMC of different shapes (e.g., article 4, cases 4–7, 20 and 29, Tables 2); 

however, in some instances the breakpoints differed in sSMC of the same case (e.g. case 13). 

Such constitutions are called cryptic mosaicism (Liehr et al. 2010/article 5). 

Comparable studies as ours based on PCL-FISH were done yet only for selected sSMC like 

e.g. such derived from chromosome 15 and showed that the majority of the sSMC(15) have 

asymmetrical breakpoints, with the two inverted arms of the SMC being unequal in length 

(Roberts et al. 2003). For PCL-FISH establishment sSMC cases previously studied by aCGH 

were used, like also done in comparable cases published by, Pietrzak and colleagues (2007) or 

Lu and colleagues (2009) using a BACs and DNA probe pooling strategy like ours. 

Besides the PCL-FISH study (article 4) in this work chromosomal breakpoints were also 

narrowed down for complex sSMC (articles 2 and 3) and to delineate the genedosage 

insensitive regions surrounding the human centromeric regions (articles 6 and 7). For the 

latter it is necessary to know that unbalanced chromosomal abnormalities (UBCA) have been 

reported for more than 50 euchromatic regions of almost all human autosomes and leading 

among other regions also to gain of genetic relevant material within the autosomal 

centromere-near region (Barber 2005), Such centromere-near, i.e., proximal chromosomal 

imbalances (C-UBCA), can be induced by sSMCs (Liehr et al. 2006c, 2009b) and also by 

intrachromosomal duplications (Liehr et al. 2009b). In (article 7) we reported the known 

minimal sizes of all C-UBCA in humans. In general, C-UBCA could be shown that at least 

96.8 Mb of the proximal chromosomal regions are tolerated as triplicates or more (Table 

3).There are molecular hints on C-UBCA for every chromosome arm, being at least between 

0.07 and 10.23 Mb in size. Also, copy number variant regions are thought to be causative at 

least for a certain number of chromosomal rearrangements (Mefford and Eichler 2009, Zhang 

et al. 2009). It was confirmed that more than 99% of the sSMC breakpoints are located within 

copy number variant regions and/or segmental duplications. Moreover, approximately 75% of 
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the breakpoints were concordant with so-called fragile sites of the human genome (Mrasek et 

al. 2010) and still there was an approximately 10% overlap of the observed breakpoints and 

interspersed telomeric sequences (Liehr 2012). In (article 6) a corresponding probe set was 

suggested to distinguish better harmless from deleterious sSMC.  

Interestingly, there are hot spots for the chromosomal breakpoints involved in sSMC 

formation. Ballif and coworkers (2007) proposed pericentromeric region BAC clone set for 

characterization and detection of sSMC besides aCGH findings and to distinguished between 

the involvement of the short arm and/or the long arm of each chromosome, defined the sizes 

of many of the markers, and revealed complex rearrangements or multiple markers in single 

individuals (Ballif et al. 2007). Own unpublished data supported these findings and showed 

correlations of copy number variant, gene-poor regions and breakpoints involved in sSMC 

formation.  

According to the result of (articles 2 and 3) in the 73 different complex sSMC only 67 

breakpoints were involved. 44/67 breakpoints were unique; the remainder observed two to 14 

times (article 3, Table 2). At present it seems, complex sSMC fall into two major groups: 

such with unique and such with (more) common breakpoints. The latter group comprises at 

present 23 different breakpoints involved 2 to 14 times in one of the 73 complex sSMC. As 

reason for this preference several mechanisms are discussed, including palindrome mediated 

recurrent translocations (Sheridan et al. 2010), homologous recombination between olfactory 

receptor gene clusters (Maas et al. 2007) or an involvement of fragile sites in the formation of 

constitutional breakpoints (Liehr et al. 2011). 

 

Summary: Chromosomal breakpoints involved in sSMC formation appear at preferential 

sites. Further detailed studies are necessary to reveal their features in more detail.  

 

3.3. Mosaicism in association with sSMC 

Mosaicism is an important factor for clinical manifestation of symptoms (Sarri et al. 2006), 

and it is a problem often associated with sSMC, not only the new discovered “cryptic 

mosaicism” of sSMC, but also cell mosaicism with a normal cell line (Liehr et al. 2006c). 

Mosaicism is present in 52.3% - 61.9% of phenotypically normal sSMC carriers, and in 

56.3% - 56.6% in phenotypically abnormal sSMC carriers (Liehr 2014a). According to 

(article 5) previous studies on lower case numbers are included in this data (Crolla et al. 

1998, Starke et al. 2003a). Thus, now we know that 52 % of sSMC cases are mosaic and there 

is a strong difference between acrocentric and non-acrocentric derived sSMC. In general, 
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acrocentric- and non-acrocentric-derived sSMC are differently susceptible to mosaicism; non-

acrocentric-derived ones are the less stable ones: 28% of acrocentric derived sSMC and 82% 

of non-acrocentric-derived sSMC are mosaic. Cryptic mosaicism appears as some sSMC tend 

to rearrange and/or be reduced in size during karyotypic evolution. This can lead to double-

ring formation or inverted duplications starting from a centric minute-shaped chromosome 

and in the end to formation of different variants and a highly complex mosaic, as some of the 

new variants can also be degraded in a subset of the cells studied (Liehr 2009). More 

confusing examples of familial sSMC can be found in the literature. Similar grades of 

mosaicism in two generations but variations in the clinical outcome have been reported (Tan-

Sindhunata et al. 2000), as well as great variations in mosaicism with no phenotypic 

consequences (Anderlid et al. 2001). Manolakos and colleagues (2010) characterized sSMC 

in their study with regard to mosaicism, in incidence rate was 39% and the majority of the 

mosaic cases (7/9) had a normal outcome (Manolakos et al. 2010).The question of whether an 

sSMC is familial or derived de novo is easy to answer for most clinical cases. The problem of 

mosaicism and its consequences for the phenotype are still not solved. Applying sophisticated 

molecular cytogenetic methods often leads to detection of more complex mosaics than 

initially detected by banding cytogenetics alone (Starke et al. 2003a, Bartels et al. 2003). In 

the overwhelming majority of the cases there is no influence of the grade of somatic 

mosaicism detectable in peripheral blood or amnion cells and the observed clinical effects 

(articles 9 and 11). And depending on the SMC is present in 10% to 86% of the peripheral 

blood cells, and to arrive at a final assessment concerning the real mosaic status of all those 

cases, examination of different tissues could be helpful (Liehr et al. 1996). This was 

underlined by a previous study by Fickelscher and coworkers (2007) who found 11 different 

levels of mosaicism of a de novo sSMC derived from chromosome 1 in the 11 postmortem 

studied tissues (Fickelscher et al. 2007).  

 

Summary: Mosaicism is one of the many factors to be determined in sSMC, as mosaicism in 

rare cases has been shown to have an impact on the clinical outcome – especially in such 

cases where an adverse prognosis was to be expected due to the sere size of an sSMC, but a 

normal outcome was observed nonetheless (article 11).  
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3.4. sSMC and genotype-phenotype correlation 

As mentioned in 3.3. mosaicism is one factor influencing genotype-phenotype correlations for 

sSMC. Thus, it has to be mentioned here, that twenty-four of the 38 informative proximal 

autosomal regions used for genotype phenotype correlations in (article 7) are based on 

mosaic sSMC cases; thus, the data summarized in (article 7, Table 3) is still to be considered 

as preliminary in those cases. Also to be mentioned is that there are sSMC cases inducing 

mosaics of partial trisomy combined with partial tetra- or even hexasomy of proximal 

euchromatin (Liehr 2014a); genotype-phenotype correlations are not available for such cases, 

yet. The best suited patients to study proximal duplications would be those with 

intrachromosomal rearrangements, as direct or inverted duplications or unbalanced insertions, 

because these cases would be non mosaic (Liehr et al. 2009b). However, patients with sSMC 

are the largest and best characterized group where to find proximal duplications (Liehr et al. 

2006c, Liehr and Weise 2007, Manvelyan et al. 2008, Rodríguez et al. 2008, Sheth et al. 

2009, Liehr et al. 2009b, Liehr 2014a). Another issue to be reflected is the copy number of a 

C-UBCA tolerated by the human genome. At least, for 15 C-UBCA low mosaics (maximum 

20.0%) of cells having four (or in one case of 20q up to six) copies of the corresponding 

regions are tolerated. The C-UBCA of chromosomes 13q, 14q and 15q can be present in four 

copies in normal carriers in 100.0% of the studied cells. In fact chromosome 15 is one of the 

seven human chromosomes with a high rate of segmental duplication (regions >1 kb that are 

not high copy repeats and have >90% identity to another genomic region). These duplications 

are clustered in two regions located on proximal and distal 15q (Bailey et al. 2002, Zody et al. 

2006). 

It was reported that only in 1/3 of the cases the sSMC is associated with clinical abnormalities 

(Liehr 2012). Besides some specific syndromes, i.e. Pallister-Killian {= i(12p), OMIM 

#601803}, isochromosome 18p {i(18p), OMIM #614290}, cat-eye {i(22p ~ q), OMIM 

#115470}, idic(15) {no OMIM number} and Emanuel or derivative chromosome 22 

{der(22)t(11;22), OMIM #609029} syndromes (Liehr 2012), for the remaining sSMC cases 

only first steps towards genotype-phenotype correlations were achieved (Liehr 2012, Liehr 

2014a). Using established and new approaches (see 3.1, articles 1-8) progress on the 

genotype-phenotype correlation for sSMC could be achieved (articles 2-4, 6-7 and 10-11). 

Especially, data which was directly implemented into the sSMC-database (Liehr 2014a) has 

been provided to better characterize the genedosage insensitive regions (see also Lurie 1993; 

Roa and Lupski 1994, Barber 2005, 2008) around the human centromeres. This data was used 

for the establishing of the yet only exemplarily published 1MB-probe set (article 6). 
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Besides the genedosage other parameters are influencing the clinical outcome in sSMC cases, 

thus hampering a simple genotype-correlation. There are the discussed above mosaicism, but 

also other factors like uniparental disomy of the sSMC’s sister chromosomes (Kotzot 2002b, 

Liehr et al. 2004b), which was not a specific topic of the present work. Still, our results go 

together well with the result of Starke and colleagues (2003a) who stated that sSMC without 

euchromatic content and without UPD can be considered as harmless, independent of 

mosaicism. Also there is an influence of parental origin and clinical outcome: > 99% of 

inherited sSMC are harmless and basically only such are a problem which formed in 

connection with the so-called McClintock mechanism (Liehr 2012). 

Besides sSMC derived due to McClintock mechanism, there are a few other rare sSMC 

groups for which genotype-phenotype correlations are scarce. These are so-called neocentric 

sSMC (not part of this work; for details see Liehr et al. 2007), sSMC going together with 

trisomy 21 (not part of this work; for details see Starke et al. 2003b), multiple sSMC and 

complex sSMC.  

One case with multiple sSMC was studied in this work (article 10). As the sSMC could be 

characterized in detail it could be shown that the clinical symptoms present in this case were 

not due to the heterochromatic sSMC derived from chromosome 6, 8 or 11, but due to the 

partial trisomy 12p11.1~12.1 induced by the fourth sSMC. Clinical features of that patient 

were similar to those with similar imbalances of proximal chromosome 12p, showing that the 

general dosage-dependant genotype-phenotype correlation can also be applied to multiple 

sSMC. Also it is striking that the multiple sSMC derive in the present case from 

chromosomes 6, 8, 11 and 12 as chromosomes 6 and 12 are over-represented in multiple 

sSMC cases reported to date compared to their contribution to single sSMC (Liehr et al. 

2006a). This might point towards a specific way of formation of multiple sSMC during 

meiosis, perhaps involving complex rearrangements, resulting in a germ cell containing all 

markers, with subsequent loss of markers during cell division (Mackie-Ogilvie et al. 1997).  

Complex sSMC were studied and summarized in (articles 2 and 3). Besides Emanuel 

syndrome (Trifonov et al. 2008) recently a der(22)t(8;22)(q24.1;q11.1) syndrome was 

reported (Sheridan et al. 2010). Besides in the present study it became obvious that there is at 

least one more syndrome present among the patients with complex sSMC – nine patients with 

a der(13 or 21)t(13 or 21;18) were reported yet. It is not known yet if it is always de novo or 

can also be due to a balanced t(13;18)(q11;p11.21) or t(18;21)(p11.21;q11.1) in one of the 

parents. However, in contrast to most other complex-sSMC associated syndromes symptoms 

are very variable, even though a trisomy 18p is induced (Liehr 2014a). As complex sSMC 
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comprise in most cases besides centromeric material also chromosomal parts from gene-rich 

subtelomeric regions, it is not surprising that in the majority of the cases the clinical 

consequences are adverse. Interestingly there are also seven cases with complex sSMC and no 

clinical signs. In concordance with the dosage dependant genotype-phenotype-correlation 

those only comprised genomic regions without dosage-dependant genes or even only 

heterochromatin. Overall, most complex sSMC are inherited form a balanced translocation in 

one parent and are also non-mosaic.  

 

Summary: The genedosage dependent genotype-phenotype correlation was verified as a 

general mechanism in simple, complex and multiple sSMC. Also the size of the euchromatin 

is the most important one on the clinical outcome, however, UPD, parental origin and 

mosaicism have also to be considered.  
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4. Conclusions and Outlook 
 
The present work provided 3 FISH-probe sets for more comprehensive sSMC-

characterization, which, together with microdissection based aCGH and literature review 

provided insights in size and borders of potentially dosage-insensitive regions around the 

human centromeres. It could be shown that chromosomal breakpoints involved in sSMC 

formation appear at preferential sites, which are gene-poor and contain copy number rather 

than single copy DNA-stretches. 

The genedosage dependent genotype-phenotype correlation was verified as a general 

mechanism in simple, complex and multiple sSMC. Also the size of the euchromatin is the 

most important one on the clinical outcome, however, UPD, parental origin and mosaicism 

have also to be considered as well as mosaicism, which was also studied in detail here.  

Overall the questions studied in this thesis could be answered:  

1. sSMC can best be characterized quickly and comprehensively using FISH-approaches; 

2. FISH-probe-sets could be developed and can now be used to distinguish straight forward 

between benign and harmful sSMC, as 

3. for most pericentric regions borders of dosage-sensitive could be defined.  

4. Also it could be shown that sSMC break preferentially in gene-poor regions. 

Even though during the last years and also in the present study already major progress was 

achieved, still lots of work is necessary for better possibilities of prenatal predictions of 

clinical outcomes due to sSMC presence. Future studies should also focus on sSMC formation 

and possibly in vitro models of sSMC. 
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